Search results for "Lean"
showing 10 items of 3611 documents
The role of radio frequency scattering in high-energy electron losses from minimum-B ECR ion source
2021
Abstract The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4–800 keV is reported. The experiments have revealed the existence of a hump at 150–300 keV energy, containing up to 15% of the lost electrons and carrying up to 30% of the measured energy losses. The mean energy of the hump is independent of the microwave power, frequency and neutral gas pressure but increases with the magnetic field strength, most importantly with the value of the minimum-B field. Experiments in pulsed operation mode have indicated the presence of the hump only when microwave power is applied, confirming that the origi…
Ion source research and development at University of Jyväskylä: Studies of different plasma processes and towards the higher beam intensities
2015
MonPS16; International audience; The long-term operation of high charge state electron cyclotron resonance ion sources fed withhigh microwave power has caused damage to the plasma chamber wall in several laboratories.Porosity, or a small hole, can be progressively created in the wall on a year time scale, which cancause a water leak from the cooling system into the plasma chamber vacuum. A burnout of theVENUS chamber is investigated. Information on the hole formation and on the necessary localhot electron power density is presented. Next, the hot electron flux to the wall is studied bymeans of simulations. First, the results of a simple model assuming that electrons are fullymagnetized and …
The impact of temperature on electrical properties of polymer-based nanocomposites
2020
This work was supported by National Research Foundation of Ukraine, project 2020.02/0217. IK would also like to thank VIAA, State Education Development Agency for Latvian state fellowship. HK would like to thank Ministry of Education and Science of Ukraine, project for young researchers No. 0119U100435. In addition, SP and AAP are thankful for financial support from Latvian Council of Science via grant lzp-2018/2-0083. HK and AAP are grateful for the support from the COST Action CA17126.
Estimating ion confinement times from beam current transients in conventional and charge breeder ECRIS
2019
International audience; Cumulative ion confinement times are probed by measuring decaying ion current transients in pulsed material injection mode. The method is applied in a charge breeder and conventional ECRIS yielding mutually corroborative results. The cumulative confinement time estimates vary from approximately 2 ms–60 ms with a clear dependence on the ion charge-to-mass ratio—higher charges having longer residence times. The long cumulative confinement times are proposed as a partial explanation to recently observed unexpectedly high ion temperatures. The results are relevant for rare ion beam (RIB) production as the confinement time and the lifetime of stable isotopes can be used f…
Towards highly accurate ab initio thermochemistry of larger systems: benzene.
2011
The high accuracy extrapolated ab initio thermochemistry (HEAT) protocol is applied to compute the total atomization energy (TAE) and the heat of formation of benzene. Large-scale coupled-cluster calculations with more than 1500 basis functions and 42 correlated electrons as well as zero-point energies based on full cubic and (semi)diagonal quartic force fields obtained with the coupled-cluster singles and doubles with perturbative treatment of the triples method and atomic natural orbital (ANO) triple- and quadruple-zeta basis sets are presented. The performance of modifications to the HEAT scheme and the scaling properties of its contributions with respect to the system size are investiga…
Communication: multireference equation of motion coupled cluster: a transform and diagonalize approach to electronic structure.
2014
The novel multireference equation-of-motion coupled-cluster (MREOM-CC) approaches provide versatile and accurate access to a large number of electronic states. The methods proceed by a sequence of many-body similarity transformations and a subsequent diagonalization of the transformed Hamiltonian over a compact subspace. The transformed Hamiltonian is a connected entity and preserves spin- and spatial symmetry properties of the original Hamiltonian, but is no longer Hermitean. The final diagonalization spaces are defined in terms of a complete active space (CAS) and limited excitations (1h, 1p, 2h, …) out of the CAS. The methods are invariant to rotations of orbitals within their respective…
Pressure‐induced widths and shifts for the ν3 band of methane
1994
International audience; Widths and shifts of methane lines perturbed by nitrogen are calculated using a complex-valued implementation of Robert-Bonamy (RB) theory. The static intermolecular potential is described as a sum of electrostatic forces and Lennard-Jones (6-12) atom-atom terms, using literature values for all physical parameters. Vibrational dependence of the isotropic potential is obtained from the polarizability of methane assuming a dispersion interaction. The repulsive part of the Lennard-Jones accounts for the greatest part of widths, while dispersion interactions are largely responsible for shifts. Although the average error between calculated and observed linewidths (up to J…
Matrix isolation and quantum chemical studies on the H2O2–SO2complex
2004
Complexation and photochemical reactions of hydrogen peroxide and sulfur dioxide have been studied in solid Ar, Kr and Xe. Complexes between H2O2 and SO2 are characterized using Fourier transform infrared spectroscopy and ab initio calculations. In solid Ar, the H2O2–SO2 complex absorptions are found at wavenumbers of 3572.8, 3518.7, 3511.2, 3504.3, 1340.3, 1280.2 and 1149.9 cm−1. In Kr and Xe matrices, the bonded OH stretching frequencies deviate from the values in Ar, and we propose that the matrix surrounding influences the structure of the H2O2–SO2 complex. UV photolysis of the H2O2–SO2 was also studied in solid Ar, Kr and Xe. This photolysis produces mainly a complex between sulfur tri…
Effect of molecular Stokes shift on polariton dynamics
2021
When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light-matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry-Pérot cavities. Our results suggest that in the case …
Supercontinuum generation in titanium dioxide waveguides
2019
International audience; Optical supercontinua are a fundamental topic that has stimulated a tremendous practical interest since the early works of Alfano et al. in the 70’s in bulk components. Photonic crystal fibers have then brought some remarkable potentialities in tailoring the dispersive properties of a waveguide while maintaining a high level of confinement over significant propagation distances. The next breakthrough is to further reduce the footprint of the nonlinear component and to achieve the generation of optical supercontinuum on a photonic chip. To reach this aim, several platforms have been successfully investigated such as silicon, silicon germanium, silicon nitride, chalcog…