Search results for "Lemma"
showing 10 items of 210 documents
Stent oversizing or not-oversizing? An unresolved dilemma
2021
Primary PCI plus stent implantation is indicated for treatment of acute coronary syndrome. Technically, due to the difference in lumen diameter between vessel portions and stent size in some coronary arteries, post-expansion of the stent is usually necessary to match proximal reference diameter and optimize stent apposition. Incomplete stent apposition has been associated with increased risk of in stent restenosis (ISR) and stent thrombosis (1) despite new stent technologies have largely reduced this risk (2-3). Although new antiplatelet drugs showed a more rapid onset of action and a stronger effect (4-5), stent apposition remains an important risk factor for stent thrombosis. As stent pos…
On the Shuffle of Star-Free Languages
2012
Motivated by the general problem to characterize families of languages closed under shuffle, we investigate some conditions under which the shuffle of two star-free languages is star-free. Some of the special cases here approached give rise to new problems in combinatorics on words.
Generalized Lebesgue points for Sobolev functions
2017
In this article, we show that a function $f\in M^{s,p}(X),$ $0<s\leq 1,$ $0<p<1,$ where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal{H}^h$-Hausdorff measure zero for a suitable gauge function $h.$
On block pumpable languages
2016
Ehrenfeucht, Parikh and Rozenberg gave an interesting characterisation of the regular languages called the block pumping property. When requiring this property only with respect to members of the language but not with respect to nonmembers, one gets the notion of block pumpable languages. It is shown that these block pumpable are a more general concept than regular languages and that they are an interesting notion of their own: they are closed under intersection, union and homomorphism by transducers; they admit multiple pumping; they have either polynomial or exponential growth.
Periodicity and repetitions in parameterized strings
2008
AbstractOne of the most beautiful and useful notions in the Mathematical Theory of Strings is that of a Period, i.e., an initial piece of a given string that can generate that string by repeating itself at regular intervals. Periods have an elegant mathematical structure and a wealth of applications [F. Mignosi and A. Restivo, Periodicity, Algebraic Combinatorics on Words, in: M. Lothaire (Ed.), Cambridge University Press, Cambridge, pp. 237–274, 2002]. At the hearth of their theory, there are two Periodicity Lemmas: one due to Lyndon and Schutzenberger [The equation aM=bNcP in a free group, Michigan Math. J. 9 (1962) 289–298], referred to as the Weak Version, and the other due to Fine and …
On the points realizing the distance to a definable set
2011
Abstract We prove a definable/subanalytic version of a useful lemma, presumably due to John Nash, concerning the points realizing the Euclidean distance to an analytic submanifold of R n . We present a parameter version of the main result and we discuss the properties of the multifunction obtained.
A multilinear Phelps' Lemma
2007
We prove a multilinear version of Phelps' Lemma: if the zero sets of multilinear forms of norm one are 'close', then so are the multilinear forms.
Hoffman's Error Bound, Local Controllability, and Sensitivity Analysis
2000
Our aim is to present sufficient conditions ensuring Hoffman's error bound for lower semicontinuous nonconvex inequality systems and to analyze its impact on the local controllability, implicit function theorem for (non-Lipschitz) multivalued mappings, generalized equations (variational inequalities), and sensitivity analysis and on other problems like Lipschitzian properties of polyhedral multivalued mappings as well as weak sharp minima or linear conditioning. We show how the information about our sufficient conditions can be used to provide a computable constant such that Hoffman's error bound holds. We also show that this error bound is nothing but the classical Farkas lemma for linear …
A restriction on the schur multiplier of nilpotent lie algebras
2011
An improvement of a bound of Yankosky (2003) is presented in this paper, thanks to a restriction which has been recently obtained by the authors on the Schur multiplier M(L) of a finite dimensional nilpotent Lie algebra L. It is also described the structure of all nilpotent Lie algebras such that the bound is attained. An important role is played by the presence of a derived subalgebra of maximal dimension. This allows precision on the size of M(L). Among other results, applications to the non-abelian tensor square L ⊗ L are illustrated.
On a normal form of symmetric maps of [0, 1]
1980
A class of continuous symmetric mappings of [0, 1] into itself is considered leaving invariant a measure absolutely continuous with respect to the Lebesgue measure.