Search results for "Length scale"
showing 10 items of 75 documents
A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’ method
2012
SUMMARY Calculating surface topography in geodynamic models is a common numerical problem. Besides other approaches, the so-called ‘sticky air’ approach has gained interest as a free-surface proxy at the top boundary. The often used free slip condition is thereby vertically extended by introducing a low density, low viscosityfluid layer. This allows the air/crust interface to behave in a similar manner to a true free surface. We present here a theoretical analysis that provides the physical conditions under which the sticky air approach is a valid approximation of a true free surface. Two cases are evaluated that characterize the evolution of topography on different timescales: (1) isostati…
Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy
2017
Abstract A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate ε, length scale of energy-containing eddies L, a turbulence anisotropy parameter , gradient Richardson number (Ri) representing the local atmospheric stability, and the rate of destruction of temperature variance . Model outp…
Accessing the gluonic structure of light nuclei at a future electron-ion collider
2020
We show how exclusive vector meson production off light ions can be used to probe the spatial distribution of small-$x$ gluons in the deuteron and $^3$He wave functions. In particular, we demonstrate how short range repulsive nucleon-nucleon interactions affect the predicted coherent $J/\Psi$ production spectra. Fluctuations of the nucleon substructure are shown to have a significant effect on the incoherent cross section above $|t|\gtrsim 0.2\,\mathrm{GeV}^2$. By explicitly performing the JIMWLK evolution, we predict the $x$-dependence of coherent and incoherent cross sections in the EIC energy range. Besides the increase of the average size of the nucleus with decreasing $x$, both the gro…
The cage elasticity and under-field structure of concentrated magnetic colloids probed by small angle X-ray scattering
2013
International audience; In the present study we probe the bulk modulus and the structure of concentrated magnetic fluids by small angle X-ray scattering. The electrostatically stabilized nanoparticles experience a repulsive interparticle potential modulated by dipolar magnetic interactions. On the interparticle distance length scale, we show that nanoparticles are trapped under-field in oblate cages formed by their first neighbours. We propose a theoretical model of magnetostriction for the field-induced deformation of the cage. This model captures the anisotropic features of the experimentally observed scattering pattern on the local scale in these strongly interacting colloidal dispersions
X-ray scattering studies of the structure of aqueous hydroxy-propylcellulose solutions
1991
X-ray diffraction studies have been undertaken on aqueous solutions of hydroxy propylcellulose (HPC) over a wide range of the scattering vector Q. The experiments revealed only modest differences in local structure on a distance scale ca. 5–300 A despite the fact that they covered concentrations generally interpreted as ranging from the isotropic (35.1 wt %) to the anisotropic liquid crystalline (LC) phase (53.5 wt %). Several models were used to interpret the small-angle scattering data, and each gave similar structural parameters and extrapolated intensities (Q → 0) for both solutions. Peaks were observed with d-spacings ca. 12–17 A in both materials. Wide-angle x-ray scattering (WAXS) sh…
Proof of multilayer structural organization in self-assembled polycation-polyanion molecular films
1994
Abstract Multilayer organization of ultrathin polycation-polyanion self-assembled films is demonstrated using two approaches. (1) Fabrication of polyion superlattices with alternation of three different polyelectrolytes in (ABCB) n fashion, which gives rise to a Bragg peak in X-ray reflectivity. The spacing d=93.4 A corresponds to the repeat unit (ABCB) n . (2) Drying-induced manipulation of the film surface at regular intervals. Normally the layer-by-layer adsorption is carried out by keeping the film wet throughout all deposition cycles. Alternatively the film surface can be manipulated by gently drying the film in a stream of nitrogen or air after the adsorption of every layer. When the …
The Ultimate Fate of Supercooled Liquids
2010
In recent years it has become widely accepted that a dynamical length scale {\xi}_{\alpha} plays an important role in supercooled liquids near the glass transition. We examine the implications of the interplay between the growing {\xi}_{\alpha} and the size of the crystal nucleus, {\xi}_M, which shrinks on cooling. We argue that at low temperatures where {\xi}_{\alpha} > {\xi}_M a new crystallization mechanism emerges enabling rapid development of a large scale web of sparsely connected crystallinity. Though we predict this web percolates the system at too low a temperature to be easily seen in the laboratory, there are noticeable residual effects near the glass transition that can account …
Photoelectropoling of azobenzene chromophores in molecular films
1994
The photoinduced reorientation and photoelectropoling processes were investigated in molecular films of aliphatically substituted azobenzenes. While polarized illumination leads to a conversion of isotropic samples into anisotropic ones, upon application of external electric fields even macroscopically polar materials are created. The macroscopic polarity can be reversed under suitable experimental conditions. Order parameters as a function of the poling field were determined by Stark spectroscopy. Using atomic force microscopy it is shown that the structure of the sample is well defined on a microscopic length scale, whereas on a macroscopic length scale it is not.
Statistical Thermodynamics of Polymer Quantum Systems
2011
Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermody- namics of two one dimensional polymer quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal…
Aggregation and Gel Formation in Basic Silico−Calco−Alkaline Solutions Studied: A SAXS, SANS, and ELS Study
1999
Gelation of strongly basic silico−alkaline solutions was promoted by appropriate additions of calcium ions. The structure of the aggregates formed in the precursor sols and the resulting gels were studied, within a wide length scale, using small-angle X-ray, small-angle neutron, and elastic light scattering. The study of the kinetics of aggregation was performed in situ. The experimental results demonstrate that gels are composed of aggregates exhibiting a fractal structure, large particles formed in the solutions just after calcium addition and, in some cases, small primary particles remaining in the solution phase. The structural features of the gels are strongly dependent on the concentr…