Search results for "LiCa"

showing 10 items of 20660 documents

Clarifying the nomenclature of some Euro-Mediterranean quillworts ( Isoetes , Isoetaceae): Indicator species and species of conservation concern

2018

International audience; To stabilize the application of some names in the genus Isoetes in the Mediterranean biodiversity hotspot, we studied herbarium specimens and imaged spores with scanning electron microscopy, with special reference to those taxa in the I. lon‐gissima and I. histrix groups that were described from France, Algeria and Turkey, and are in need of a taxonomic revision. The following names are lectotypified: I. adspersa, I. boryana, I. delalandei, and I. viollaei. Holotypes of I. perralderiana and I. olympica were ascertained. We conclude that I. boryana (listed in the “Bern Convention” and in the European Union “Habitats” Directive) justifies consideration at species rank,…

0106 biological sciences0301 basic medicineMediterranean climateConservationPlant ScienceMediterranean[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics Phylogenetics and taxonomy010603 evolutionary biology01 natural sciencesLycophyte03 medical and health sciencesIsoetaceaeNomenclatureEcology Evolution Behavior and SystematicsTaxonomybiologyEcologySettore BIO/02 - Botanica SistematicaIsoete[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanicsbiology.organism_classificationEcology Evolution Behavior and SystematicEurope030104 developmental biologyIsoetesIndicator speciesSettore BIO/03 - Botanica Ambientale E ApplicataTaxonomy (biology)
researchProduct

The loss of dispersal on islands hypothesis revisited: Implementing phylogeography to investigate evolution of dispersal traits in Periploca (Apocyna…

2017

Aim: The loss of dispersal on islands hypothesis (LDIH) posits that wind-dispersed plants should exhibit reduced dispersal potential, particularly if island populations are old. In this study, we tested this hypothesis using a detailed phylogeographical framework across different geographical scales. Location: Mainland and island areas of the Atlantic and Mediterranean regions, including Macaronesia (Canary Islands and Cape Verde) and Mediterranean islands in the strait of Sicily. Methods: Forty-five populations of Periploca laevigata, a wind-dispersed shrub, were sampled. Plastid and nuclear microsatellite data were used to reconstruct spatio-temporal patterns of island colonization, and e…

0106 biological sciences0301 basic medicineMediterranean climateSettore BIO/07 - EcologiaSeed dispersalanemochory dispersal ability island colonization Macaronesia parallel evolution seed dispersal010603 evolutionary biology01 natural sciencesCape verde03 medical and health sciencesisland colonizationAnemochoryPeriplocadispersal abilityEcology Evolution Behavior and SystematicsMacaronesia parallel evolutionEcologybiologyEcologybiology.organism_classificationseed dispersalPhylogeography030104 developmental biologySettore BIO/03 - Botanica Ambientale E ApplicataBiological dispersalMainlandMediterranean Islands
researchProduct

Phosphinotripeptidic Inhibitors of Leucylaminopeptidases

2021

Phosphinate pseudopeptide are analogs of peptides containing phosphinate moiety in a place of the amide bond. Due to this, the organophosphorus fragment resembles the tetrahedral transition state of the amide bond hydrolysis. Additionally, it is also capable of coordinating metal ions, for example, zinc or magnesium ions. These two properties of phosphinate pseudopeptides make them an ideal candidate for metal-related protease inhibitors. This research investigates the influence of additional residue in the P2 position on the inhibitory properties of phosphinopeptides. The synthetic strategy is proposed, based on retrosynthetic analysis. The N-C-P bond formation in the desired compounds is …

0106 biological sciences0301 basic medicineModels MolecularMolecular modelQH301-705.5StereochemistryPhosphinesProtein ConformationSwineLAP inhibitorsligand-enzyme interactionPhosphinate01 natural sciencesAminopeptidaseCatalysisArticleInorganic Chemistry03 medical and health sciencesResidue (chemistry)phosphinate pseudopeptideLeucyl AminopeptidaseMoietyPeptide bondAnimalsBiology (General)Physical and Theoretical ChemistryEnzyme InhibitorsQD1-999Molecular BiologyMagnesium ionmolecular modeling; LAP inhibitors; barley aminopeptidase inhibitor; phosphinate pseudopeptide; ligand-enzyme interaction; organophosphorus compoundSpectroscopyChemistrymolecular modelingOrganic ChemistryGeneral Medicineorganophosphorus compoundPeptide FragmentsComputer Science ApplicationsChemistry030104 developmental biologybarley aminopeptidase inhibitorHordeum vulgare010606 plant biology & botanyInternational Journal of Molecular Sciences; Volume 22; Issue 10; Pages: 5090
researchProduct

The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae

2021

Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1–C6, C2–C3, C4–C5) differing from that of insect counterparts (C1–C3, C2–C5, C4–C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destruc…

0106 biological sciences0301 basic medicineModels MolecularProteomicsProteomeOdorant bindingProtein ConformationInsectLigandsReceptors Odorant01 natural scienceschemistry.chemical_compoundTetranychus urticaeBiology (General)SpectroscopyPhylogenymedia_commonmass spectrometryGeneticsbiologyligand-bindingMolecular Structurespider mitesGeneral MedicineTetranychus urticaeComputer Science ApplicationsChemistryConiferyl aldehydedisulfide bridgesTetranychidaeProtein Bindingspider mites.QH301-705.5media_common.quotation_subjectodorant-binding proteinsCatalysisArticleInorganic Chemistry03 medical and health sciencesSpider mite<i>Tetranychus urticae</i>AnimalsAmino Acid SequencePhysical and Theoretical ChemistryQD1-999Molecular BiologySpiderOrganic Chemistrybiology.organism_classification010602 entomology030104 developmental biologychemistryVarroa destructorOdorantsChelicerataInternational Journal of Molecular Sciences
researchProduct

An Arabidopsis Mutant Over-Expressing Subtilase SBT4.13 Uncovers the Role of Oxidative Stress in the Inhibition of Growth by Intracellular Acidificat…

2020

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not orga…

0106 biological sciences0301 basic medicineMutantmedicine.disease_cause01 natural sciencesCatalysisInorganic Chemistrylcsh:ChemistryH<sup>+</sup>-ATPase03 medical and health sciencesorganic acidsmedicinePhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5Spectroscopychemistry.chemical_classificationReactive oxygen speciesNADPH oxidasebiologyNADPH oxidaseEndoplasmic reticulumOrganic ChemistryWild typeROSGeneral MedicineComputer Science ApplicationsCell biology030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999biology.proteinactivation-taggingIntracellularOxidative stress010606 plant biology & botanyOrganic acidInternational Journal of Molecular Sciences
researchProduct

Pearl grafting: tracking the biological origin of nuclei by straightforward immunological methods.

2018

9 pages; International audience; French Polynesia is renowned for the production of Tahitian black pearl. These gems are obtained by grafting a nucleus into the gonad of a receiving oyster together with a graft, i.e. a small section of mantle tissue of a donor oyster. This procedure initiates the formation of a pearl sack around the nucleus, and subsequently, the deposition of concentric layers of nacre. The nucleus plays a key-role in pearl formation and its characteristics influence markedly the quality of the final product. As it is manufactured from mollusc shells, it contains a small percentage of organics. In the present paper, we used a set of biochemical techniques to characterize a…

0106 biological sciences0301 basic medicineOystermatrix proteinsAquatic Science01 natural sciences[ CHIM ] Chemical SciencesPinctada margaritifera03 medical and health sciences[ CHIM.ORGA ] Chemical Sciences/Organic chemistrybiology.animal[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Botanymedicinebiology010604 marine biology & hydrobiologyPearl oysterPinctada margaritiferanucleusAmblemaMusselbiology.organism_classificationAmblema plicataAmblema plicata030104 developmental biologymedicine.anatomical_structureBiochemistry[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]ELISApearl oysterNucleusPinctada
researchProduct

Evidence for Succession and Putative Metabolic Roles of Fungi and Bacteria in the Farming Mutualism of the Ambrosia Beetle Xyleborus affinis.

2020

The bacterial and fungal community involved in ambrosia beetle fungiculture remains poorly studied compared to the famous fungus-farming ants and termites. Here we studied microbial community dynamics of laboratory nests, adults, and brood during the life cycle of the sugarcane shot hole borer, Xyleborus affinis. We identified a total of 40 fungal and 428 bacterial operational taxonomic units (OTUs), from which only five fungi (a Raffaelea fungus and four ascomycete yeasts) and four bacterial genera (Stenotrophomonas, Enterobacter, Burkholderia, and Ochrobactrum) can be considered the core community playing the most relevant symbiotic role. Both the fungal and bacterial populations varied s…

0106 biological sciences0301 basic medicinePhysiologyAmbrosia fungimicrobiomeFungicultureFungusBiologyAmbrosia beetle010603 evolutionary biology01 natural sciencesBiochemistryMicrobiologyHost-Microbe Biology03 medical and health sciencesmycobiomeSymbiosisBotanyGeneticsAmbrosiaInternal transcribed spacerXyleborus affinisMolecular BiologyEcology Evolution Behavior and SystematicsMutualism (biology)fungibiology.organism_classificationQR1-502Computer Science Applications030104 developmental biologyModeling and SimulationResearch Article
researchProduct

First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role.

2018

The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functio…

0106 biological sciences0301 basic medicinePhysiologyGlycosylasesWaspsVenomLaccasesHymenopteraInsectmelanization01 natural sciencesvirulence factorParasitoidTranscriptomePhysiological suppressionLaboratory of EntomologyArthropod Venomsmedia_commonLarvabiologyVirulence factorsPhenotypeNezara viridulalaccazesInsect ProteinsFemaleMelanizationmedia_common.quotation_subjectZoologycomplex mixturesHost-Parasite InteractionsHeteroptera03 medical and health sciencesglycosylasesExocrine GlandsMicroscopy Electron TransmissionAnimalsPeptidaseHost (biology)Laccasefungibiology.organism_classificationLaboratorium voor Entomologiephysiological suppression010602 entomology030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicatapeptidasesInsect ScienceEPS[SDE.BE]Environmental Sciences/Biodiversity and EcologyPeptidasesTranscriptomeGlycosylaseJournal of insect physiology
researchProduct

Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants

2018

Abstract Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG)…

0106 biological sciences0301 basic medicinePhysiologyRNA StabilityNonsense-mediated decayArabidopsisPlant ScienceBiology01 natural scienceslaw.inventionDephosphorylation03 medical and health sciencesSpecies SpecificityGene Expression Regulation PlantlawArabidopsis thalianaFeedback PhysiologicalRegulation of gene expressionArabidopsis ProteinsMechanism (biology)RNACell BiologyGeneral MedicineRNA surveillancebiology.organism_classificationNonsense Mediated mRNA DecayCell biology030104 developmental biologyRNA PlantSuppressorCarrier ProteinsRNA Helicases010606 plant biology & botanyPlant and Cell Physiology
researchProduct

Blattella germanica displays a large arsenal of antimicrobial peptide genes

2020

Defence systems against microbial pathogens are present in most living beings. The German cockroach Blattella germanica requires these systems to adapt to unhealthy environments with abundance of pathogenic microbes, in addition to potentially control its symbiotic systems. To handle this situation, four antimicrobial gene families (defensins, termicins, drosomycins and attacins) were expanded in its genome. Remarkably, a new gene family (blattellicins) emerged recently after duplication and fast evolution of an attacin gene, which is now encoding larger proteins with the presence of a long stretch of glutamines and glutamic acids. Phylogenetic reconstruction, within Blattellinae, suggests …

0106 biological sciences0301 basic medicinePore Forming Cytotoxic ProteinsGenome InsectEvolutionary biology010603 evolutionary biology01 natural sciencesGenomeArticle03 medical and health sciencesProtein DomainsPhylogeneticsGene duplicationGene expressionGene familyAnimalsAmino Acid SequenceSymbiosisGenePhylogenyRegulation of gene expressionGeneticsGerman cockroachMultidisciplinarybiologyAntimicrobial responsesBlattellidaebiology.organism_classificationGenome evolution030104 developmental biologyGene Expression RegulationEntomology
researchProduct