Search results for "Lie group"

showing 10 items of 100 documents

Séparation des orbites coadjointes d'un groupe exponentiel par leur enveloppe convexe

2008

Resume Revenant sur la question de la separation des representations unitaires irreductibles d'un groupe de Lie exponentiel G par leur application moment, nous presentons ici une nouvelle solution : au lieu de prolonger l'application moment a l'algebre enveloppante de G , nous proposons de definir une application (non lineaire) Φ de g ∗ dans le dual g + ∗ de l'algebre de Lie d'un groupe resoluble G + , de prolonger les representations de G a G + de telle facon que les orbites coadjointes correspondantes de G + soient caracterisees par l'adherence de leur enveloppe convexe. Ceci nous permet de separer les representations irreductibles de G .

CombinatoricsMathematics(all)Unitary representationSolvable groupGeneral MathematicsIrreducible representationUnitary groupLie algebraLie groupGroup algebraGroup representationMathematicsBulletin des Sciences Mathématiques
researchProduct

Semisimple Lie Algebras

1989

Let F be the field of real or complex numbers. A Lie algebra is a vector space g over F with a Lie product (or commutator) [·,·]: g × g → g such that $$x \mapsto \left[ {x,y} \right]\;is\;linear\;for\;any\;y \in g,$$ (1) $$\left[ {x,y} \right] =- \left[ {y,x} \right],$$ (2) $$\left[ {x,\left[ {y,z} \right]} \right] + \left[ {y,\left[ {z,x} \right]} \right] + \left[ {z,\left[ {x,y} \right]} \right] = 0.$$ (3) The last condition is called the Jacobi identity. From (1) and (2) it follows that also y ↦ [x,y] is linear for any x ∈ g. In this chapter we shall consider only fini te-dimensional Lie algebras. In any vector space g one can always define a trivial Lie product [x,y] = 0. A Lie algebra …

CombinatoricsPhysicsProduct (mathematics)Simple Lie groupLie algebraCartan decompositionReal formKilling formLie conformal algebraGraded Lie algebra
researchProduct

Norms of harmonic projection operators on compact Lie groups

1988

In order to simplify the notation, we will assume throughout that G is connected, simply connected and semisimple. Sharp estimates for vp(z 0 when G = SU(2) have been obtained by Sogge [6], who proved that Vp(Zt) ~ d~ tl/v), where y(t) is the function which is affine on [1/2, 3/4] and on [3/4, 1] and is such that 7(1/2)=0, 7(3/4)=1/4, 7(1)=1. Two results in the literature give crucial estimates from below for vp(n) in the general case. The first estimate concernes the LP'-norm of the character X, : if ,~, is the highest weight of n and 0 is half the sum of the positive roots, then II x=llp,--> + 011-dimG/p" (1.2)

CombinatoricsSymplectic groupSpin groupCompact groupGeneral MathematicsSimple Lie groupMathematical analysisLie algebraAdjoint representationMaximal torus(gK)-moduleMathematicsMathematische Annalen
researchProduct

Simple and semisimple Lie algebras and codimension growth

1999

Discrete mathematicsAdjoint representation of a Lie algebraPure mathematicsRepresentation of a Lie groupApplied MathematicsGeneral MathematicsSimple Lie groupFundamental representationReal formKilling formKac–Moody algebraAffine Lie algebraMathematicsTransactions of the American Mathematical Society
researchProduct

Irreducible finitary Lie algebras over fields of positive characteristic

2000

A Lie subalgebra L of [gfr ][lfr ][ ](V) is said to be finitary if it consists of elements of finite rank. We study the situation when L acts irreducibly on the infinite-dimensional vector space V and show: if Char [ ] > 7, then L has a unique minimal ideal I. Moreover I is simple and L/I is solvable.

Discrete mathematicsAdjoint representation of a Lie algebraPure mathematicsRepresentation of a Lie groupGeneral MathematicsSimple Lie groupSubalgebraLie algebraAdjoint representationFundamental representationFinitaryMathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

Transportation cost inequalities on path and loop groups

2005

AbstractLet G be a connected Lie group with the Lie algebra G. The action of Cameron–Martin space H(G) on the path space Pe(G) introduced by L. Gross (Illinois J. Math. 36 (1992) 447) is free. Using this fact, we define the H-distance on Pe(G), which enables us to establish a transportation cost inequality on Pe(G). This method will be generalized to the path space over the loop group Le(G), so that we obtain a transportation cost inequality for heat measures on Le(G).

Discrete mathematicsPath (topology)Adjoint representationLie groupGirsanov theoremSpace (mathematics)Action (physics)Heat measuresLoop groupsLoop (topology)Loop groupLie algebraWasserstein distanceAnalysisMathematicsH-distanceJournal of Functional Analysis
researchProduct

Non-integrality of the PI-exponent of special Lie algebras

2013

If L is a special Lie algebra over a field of characteristic zero, its sequence of codimensions is exponentially bounded. The PI-exponent measures the exponential rate of growth of such sequence and here we give a first example of a special Lie algebra whose (upper and lower) PI-exponent is non-integer.

Discrete mathematicsPure mathematicsAdjoint representation of a Lie algebraApplied MathematicsSimple Lie groupLie algebraLie algebraReal formKilling formAffine Lie algebraMathematicsLie conformal algebraGraded Lie algebra
researchProduct

On the Codimension Growth of Finite-Dimensional Lie Algebras

1999

Abstract We study the exponential growth of the codimensions cn(L) of a finite-dimensional Lie algebra L over a field of characteristic zero. We show that if the solvable radical of L is nilpotent then lim n → ∞ c n ( L ) exists and is an integer.

Discrete mathematicsPure mathematicsAdjoint representation of a Lie algebraNilpotentAlgebra and Number TheorySimple Lie groupUniversal enveloping algebraKilling formAffine Lie algebraMathematicsLie conformal algebraGraded Lie algebraJournal of Algebra
researchProduct

LEFT INVARIANT COMPLEX STRUCTURES ON NILPOTENT SIMPLY CONNECTED INDECOMPOSABLE 6-DIMENSIONAL REAL LIE GROUPS

2007

Integrable complex structures on indecomposable 6-dimensional nilpotent real Lie algebras have been computed in a previous paper, along with normal forms for representatives of the various equivalence classes under the action of the automorphism group. Here we go to the connected simply connected Lie group G0 associated to such a Lie algebra 𝔤. For each normal form J of integrable complex structures on 𝔤, we consider the left invariant complex manifold G = (G0, J) associated to G0 and J. We explicitly compute a global holomorphic chart for G and we write down the multiplication in that chart.

Discrete mathematicsPure mathematicsAdjoint representation of a Lie algebraRepresentation of a Lie groupGeneral MathematicsSimple Lie groupLie algebraAdjoint representationReal formMathematicsLie conformal algebraGraded Lie algebraInternational Journal of Algebra and Computation
researchProduct

Some criteria for detecting capable Lie algebras

2013

Abstract In virtue of a recent bound obtained in [P. Niroomand, F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra 39 (2011) 1293–1297], we classify all capable nilpotent Lie algebras of finite dimension possessing a derived subalgebra of dimension one. Indirectly, we find also a criterion for detecting noncapable Lie algebras. The final part contains a construction, which shows that there exist capable Lie algebras of arbitrary big corank (in the sense of Berkovich–Zhou).

Discrete mathematicsPure mathematicsAlgebra and Number TheoryHeisenberg algebraNon-associative algebranilpotent Lie algebrasKilling formAffine Lie algebraGraded Lie algebraLie conformal algebraNilpotent Lie algebraSettore MAT/02 - AlgebraAdjoint representation of a Lie algebraRepresentation of a Lie groupcorankHomology of Lie algebraMathematicsJournal of Algebra
researchProduct