Search results for "Light-harvesting complex"

showing 10 items of 44 documents

Characterisation of Chlorophyll a and Chlorophyll b Monomers in Various Solvent Environments with Ultrafast Spectroscopy

1998

In photosynthesis the energy from the sun is captured by light harvesting chlorophyll pigments and converted to stable chemical energy, by the photochemical reaction center. Photosynthetic energy transfer in the antenna systems of green plants has previously been studied by ultrafast time resolved spectroscopy. The characteristics of the chlorophyll pigments itself is important to study in order to understand the dynamics on a femtosecond timescale. One way to study the energy transfer is to use transient absorption spectroscopy and follow the increase or decrease in the transient absorption signal with time (1). Another way to study the energy transfer is to monitor the change in dichroism…

Chlorophyll bPhysics::Biological Physics0303 health sciencesChlorophyll aMaterials scienceDichroism010402 general chemistryPhotochemistry7. Clean energy01 natural sciences0104 chemical sciencesLight-harvesting complex03 medical and health scienceschemistry.chemical_compoundchemistryChlorophyllUltrafast laser spectroscopyTime-resolved spectroscopySpectroscopy030304 developmental biology
researchProduct

Comparative analysis of the composition of two chlorophyll-b-containing light-harvesting complexes.

1990

The major light-harvesting complexes from Mantoniella squamata (Prasinophyceae) and from Chlorella fusca (Chlorophyceae) were analyzed with respect to polypeptide composition and pigmentation. It was found that the polypeptides of Mantoniella are smaller than those of Chlorella and bind twice the amount of pigment. We assume that the amount of pigment per polypeptide is of ecological as well as of taxonomical importance.

Chlorophyll bbiologyPrasinophyceaeChlorophyceaePlant Sciencebiology.organism_classificationLight-harvesting complexChlorellachemistry.chemical_compoundPigmentAlgaechemistryMantoniellavisual_artBotanyvisual_art.visual_art_mediumGeneticssense organsPlanta
researchProduct

Effects of chlorophyll a, chlorophyll b, and xanthophylls on the in vitro assembly kinetics of the major light-harvesting chlorophyll a/b complex, LH…

2001

The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem II in higher plants can be reconstituted with pigments in lipid-detergent micelles. The pigment-protein complexes formed are functional in that they perform efficient internal energy transfer from chlorophyll b to chlorophyll a. LHCIIb formation in vitro, can be monitored by the appearance of energy transfer from chlorophyll b to chlorophyll a in time-resolved fluorescence measurements. LHCIIb is found to form in two apparent kinetic steps with time constants of about 30 and 200 seconds. Here we report on the dependence of the LHCIIb formation kinetics on the composition of the pigment mixture used in the reconstitut…

Chlorophyll bchemistry.chemical_classificationChlorophyll afood and beveragesLight-harvesting complexes of green plantsPhotochemistrychemistry.chemical_compoundB vitaminschemistryNeoxanthinStructural BiologyChlorophyllXanthophyllChlorophyll bindingMolecular BiologyJournal of Molecular Biology
researchProduct

A field study on solar-induced chlorophyll fluorescence and pigment parameters along a vertical canopy gradient of four tree species in an urban envi…

2013

Abstract: To better understand the potential uses of vegetation indices based on the sun-induced upward and downward chlorophyll fluorescence at leaf and at canopy scales, a field study was carried out in the city of Valencia (Spain). Fluorescence yield (FY) indices were derived for trees at different traffic intensity locations and at three canopy heights. This allowed investigating within-tree and between-tree variations of FY indices for four tree species. Several FY indices showed a significant (p < 0.05) and important effect of tree location for the species Morus alba (white mulberry) and Phoenix canariensis (Canary Island date palm). The upward FY parameters of M. alba, and the upward…

ChlorophyllCanopyEnvironmental EngineeringPhotosynthesisAtmospheric sciencesFiresFluorescenceTreesLight-harvesting complexchemistry.chemical_compoundBotanyEnvironmental ChemistryCitiesWaste Management and DisposalChlorophyll fluorescenceBiologyAir PollutantsbiologyVegetationbiology.organism_classificationPollutionPlant LeavesChemistrychemistrySpainPhoenix canariensisChlorophyllEnvironmental scienceParticulate MatterShadingEnvironmental MonitoringThe science of the total environment
researchProduct

Filling the “green gap” of the major light-harvesting chlorophyll a/b complex by covalent attachment of Rhodamine Red

2009

AbstractThe major light-harvesting chlorophyll a/b complex (LHCII) greatly enhances the efficiency of photosynthesis in green plants. Recombinant LHCII can be assembled in vitro from its denatured, bacterially expressed apoprotein and plant pigments. This makes it an interesting candidate for biomimetic light-harvesting in photovoltaic applications. Due to its almost 20 pigments bound per apoprotein, LHCII absorbs efficiently in the blue and red spectral domains of visible light but less efficiently in the green domain, the so-called “green gap” in its absorption spectrum. Here we present a hybrid complex of recombinant LHCII with organic dyes that add to LHCII absorption in the green spect…

ChlorophyllLHCIIProtein FoldingFRET (Förster resonance energy transfer)Chlorophyll aAbsorption spectroscopyBiophysicsPhotosynthesisPhotochemistryBiochemistryRhodamineLight-harvesting complexchemistry.chemical_compoundPhotosynthesisFluorescent DyesRhodaminesChlorophyll Afood and beveragesSite-specific labelingCell BiologyMaleimide dyeB vitaminsSolar spectrumchemistryChlorophyllVisible spectrumBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

Carotenoid binding sites in LHCIIb

2000

The major light-harvesting complex of photosystem II can be reconstituted in vitro from its bacterially expressed apoprotein with chlorophylls a and b and neoxanthin, violaxanthin, lutein, or zeaxanthin as the only xanthophyll. Reconstitution of these one-carotenoid complexes requires low-stringency conditions during complex formation and isolation. Neoxanthin complexes (containing 30–50% of the all-trans isomer) disintegrate during electrophoresis, exhibit a largely reduced resistance against proteolytic attack; in addition, energy transfer from Chl b to Chl a is easily disrupted at elevated temperature. Complexes reconstituted in the presence of either zeaxanthin or lutein contain nearly …

ChlorophyllLuteinPhotosynthetic Reaction Center Complex ProteinsPigment bindingLight-Harvesting Protein ComplexesXanthophyllsBiologyBinding CompetitiveBiochemistrySubstrate SpecificityLight-harvesting complexchemistry.chemical_compoundNeoxanthinZeaxanthinsTrypsinProtein PrecursorsCarotenoidPlant Proteinschemistry.chemical_classificationBinding SitesChlorophyll ALuteinPhotosystem II Protein Complexfood and beveragesPigments BiologicalPlantsbeta CaroteneCarotenoidseye diseasesZeaxanthinEnergy TransferchemistryBiochemistryXanthophyllElectrophoresis Polyacrylamide GelApoproteinsViolaxanthinEuropean Journal of Biochemistry
researchProduct

Derivation of coarse-grained simulation models of chlorophyll molecules in lipid bilayers for applications in light harvesting systems

2015

The correct interplay of interactions between protein, pigment and lipid molecules is highly relevant for our understanding of the association behavior of the light harvesting complex (LHCII) of green plants. To cover the relevant time and length scales in this multicomponent system, a multi-scale simulation ansatz is employed that subsequently uses a classical all atomistic (AA) model to derive a suitable coarse grained (CG) model which can be backmapped into the AA resolution, aiming for a seamless conversion between two scales. Such an approach requires a faithful description of not only the protein and lipid components, but also the interaction functions for the indispensable pigment mo…

ChlorophyllModels MolecularChlorophyll bChlorophyll aChlorophyll ABilayerLipid BilayersLight-Harvesting Protein ComplexesGeneral Physics and AstronomyLight-harvesting complexchemistry.chemical_compoundCrystallographychemistryChemical physicsChlorophyllddc:540MoleculeProtein MultimerizationPhysical and Theoretical ChemistryProtein Structure QuaternaryLipid bilayerAnsatz
researchProduct

Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes

2006

The present review describes the use of quantum chemical methods in estimation of structures and electronic transition energies of photosynthetic pigments in vacuum, in solution and imbedded in proteins. Monomeric Mg-porphyrins, chlorophylls and bacteriochlorophylls and their solvent 1:1 and 1:2 complexes were studied. Calculations were performed for Mg-porphyrin, Mg-chlorin, Mg-bacteriochlorin, mesochlorophyll a, chlorophylls a, b, c(1), c(2), c(3), d and bacteriochlorophylls a, b, c, d, e, f, g, h, plus several homologues. Geometries were optimised with PM3, PM3/CISD, PM5, ab initio HF (6-31G*/6-311G**) and density functional B3LYP (6-31G*/6-311G**) methods. Spectroscopic transition energ…

ChlorophyllModels MolecularMolecular ConformationAb initioGeneral Physics and AstronomyElectronic structureCrystallography X-RayMolecular electronic transitionLight-harvesting complexchemistry.chemical_compoundAb initio quantum chemistry methodsComputational chemistryComputer SimulationZINDOPhysical and Theoretical ChemistryBacteriochlorophyllsbiologyChemistryChloroflexus aurantiacusProteinsbiology.organism_classificationEnergy TransferModels ChemicalQuantum TheoryPhysical chemistryBacteriochlorophyllPhys. Chem. Chem. Phys.
researchProduct

Light-harvesting chlorophyll protein (LHCII) drives electron transfer in semiconductor nanocrystals

2017

Type-II quantum dots (QDs) are capable of light-driven charge separation between their core and the shell structures; however, their light absorption is limited in the longer-wavelength range. Biological light-harvesting complex II (LHCII) efficiently absorbs in the blue and red spectral domains. Therefore, hybrid complexes of these two structures may be promising candidates for photovoltaic applications. Previous measurements had shown that LHCII bound to QD can transfer its excitation energy to the latter, as indicated by the fluorescence emissions of LHCII and QD being quenched and sensitized, respectively. In the presence of methyl viologen (MV), both fluorescence emissions are quenched…

ChlorophyllParaquatPhotosynthetic reaction centreMaterials scienceAbsorption spectroscopyLight-Harvesting Protein ComplexesBiophysics02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesBiochemistryElectron TransportLight-harvesting complexElectron transferQuantum DotsUltrafast laser spectroscopyFluorescence Resonance Energy TransferAction spectrumPeasPhotosystem II Protein ComplexCell Biology021001 nanoscience & nanotechnologyFluorescence0104 chemical sciencesSemiconductorsQuantum dotNanoparticles0210 nano-technologyBiochimica et Biophysica Acta (BBA) - Bioenergetics
researchProduct

Water soluble chlorophyll binding protein of higher plants: A most suitable model system for basic analyses of pigment–pigment and pigment–protein in…

2011

Abstract This short review paper describes spectroscopic studies on pigment–pigment and pigment–protein interactions of chlorophyll (Chl) a and b bound to the recombinant protein of class IIa water soluble chlorophyll protein (WSCP) from cauliflower. Two Chls form a strongly excitonically coupled open sandwich dimer within the tetrameric protein matrix. In marked contrast to the mode of excitonic coupling of Chl and bacterio-Chl molecules in light harvesting complexes and reaction centers of all photosynthetic organisms, the unique structural pigment array in the Chl dimer of WSCP gives rise to an upper excitonic state with a large oscillator strength. This property opens the way for thorou…

ChlorophyllPhysiologyTetrameric proteinDimerLight-Harvesting Protein ComplexesTemperatureWatermacromolecular substancesPlant SciencePlantsPhotochemistryPhotosynthesisModels BiologicalLight-harvesting complexchemistry.chemical_compoundPigmentchemistryChlorophyllvisual_artvisual_art.visual_art_mediumChlorophyll bindingMoleculeAgronomy and Crop ScienceJournal of Plant Physiology
researchProduct