Search results for "Limit cycle"
showing 10 items of 29 documents
Darboux integrable system with a triple point and pseudo-abelian integrals
2016
We study pseudo-abelian integrals associated with polynomial perturbations of Dar-boux integrable system with a triple point. Under some assumptions we prove the local boundedness of the number of their zeros. Assuming that this is the only non-genericity, we prove that the number of zeros of the corresponding pseudo-abelian integrals is bounded uniformly for nearby Darboux integrable foliations.
A note on a generalization of Françoise's algorithm for calculating higher order Melnikov functions
2004
In [J. Differential Equations 146 (2) (1998) 320–335], Françoise gives an algorithm for calculating the first nonvanishing Melnikov function M of a small polynomial perturbation of a Hamiltonian vector field and shows that M is given by an Abelian integral. This is done under the condition that vanishing of an Abelian integral of any polynomial form ω on the family of cycles implies that the form is algebraically relatively exact. We study here a simple example where Françoise’s condition is not verified. We generalize Françoise’s algorithm to this case and we show that M belongs to the C[log t, t, 1/t] module above the Abelian integrals. We also establish the linear differential system ver…
A generalization of Françoise's algorithm for calculating higher order Melnikov functions
2002
Abstract In [J. Differential Equations 146 (2) (1998) 320–335], Francoise gives an algorithm for calculating the first nonvanishing Melnikov function Ml of a small polynomial perturbation of a Hamiltonian vector field and shows that Ml is given by an Abelian integral. This is done under the condition that vanishing of an Abelian integral of any polynomial form ω on the family of cycles implies that the form is algebraically relatively exact. We study here a simple example where Francoise's condition is not verified. We generalize Francoise's algorithm to this case and we show that Ml belongs to the C [ log t,t,1/t] module above the Abelian integrals. We also establish the linear differentia…
Abelian integrals and limit cycles
2006
Abstract The paper deals with generic perturbations from a Hamiltonian planar vector field and more precisely with the number and bifurcation pattern of the limit cycles. In this paper we show that near a 2-saddle cycle, the number of limit cycles produced in unfoldings with one unbroken connection, can exceed the number of zeros of the related Abelian integral, even if the latter represents a stable elementary catastrophe. We however also show that in general, finite codimension of the Abelian integral leads to a finite upper bound on the local cyclicity. In the treatment, we introduce the notion of simple asymptotic scale deformation.
Attractors/Basin of Attraction
2020
It is a controversial issue to decide who first coined the term “attractor”. According to Peter Tsatsanis, the editor of the English version of Prédire n’est pas expliquer, it was René Thom who first introduced such a term. It is necessary, however, to remember that Thom thought that it was first introduced by the American mathe- matician Steven Smale, “although Smale says it was Thom that coined the neolo- gism “attractor”“(Tsatsanis 2010: 63–64 n. 20). From this point of view, Bob Williams expressed a more cautious opinion by saying that “the word “attractor” was invented by these guys, Thom and Smale” (Cucker and Wong 2000: 183). But other mathematicians are of the opinion that the term …
Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems
1999
The tangential Hilbert 16th problem is to place an upper bound for the number of isolated ovals of algebraic level curves { H ( x , y ) = const } \{H(x,y)=\operatorname {const}\} over which the integral of a polynomial 1-form P ( x , y ) d x + Q ( x , y ) d y P(x,y)\,dx+Q(x,y)\,dy (the Abelian integral) may vanish, the answer to be given in terms of the degrees n = deg H n=\deg H and d = max ( deg P , deg Q ) d=\max (\deg P,\deg Q) . We describe an algorithm producing this upper bound in the form of a primitive recursive (in fact, elementary) function of n n and d d for the particular case of hyperelliptic polynomials H ( x , y ) = y 2 + U ( x ) H(x,y)=y^2+U(x) under the additional as…
Design, Control, and Analysis of Nonlinear Circuits with Tunnel Diode with Piecewise Affine Dynamics
2019
Controllable Solid Rocket Motor Nozzle Operations in Conditions of Limited-Amplitude Fluctuations
2009
A nonlinear multi scale analysis of a controllable solid rocket motor operating in conditions ranging from high-amplitude fluctuations in combustion chamber to conditions lying in limit cycle is presented and the motor behavior subsequent to some relevant nozzle operations is investigated. Effects of acoustic-vorticity-entropy wave coupling, wave steepening, rotational/viscous flow losses, steep-fronted wave losses are taken into account and oscillatory energy losses in pintle-nozzle, unsteady combustion and chamber geometry changes resulting from grain regression are included. The analysis provides evidence that the unsteady energy balance and the motor wave amplitude evolution are influen…
Multiplicity of fixed points and growth of ε-neighborhoods of orbits
2012
We study the relationship between the multiplicity of a fixed point of a function g, and the dependence on epsilon of the length of epsilon-neighborhood of any orbit of g, tending to the fixed point. The relationship between these two notions was discovered before (Elezovic, Zubrinic, Zupanovic) in the differentiable case, and related to the box dimension of the orbit. Here, we generalize these results to non-differentiable cases introducing a new notion of critical Minkowski order. We study the space of functions having a development in a Chebyshev scale and use multiplicity with respect to this space of functions. With the new definition, we recover the relationship between multiplicity o…
Non-accumulation of critical points of the Poincaré time on hyperbolic polycycles
2007
We call Poincare time the time associated to the Poincar6 (or first return) map of a vector field. In this paper we prove the non-accumulation of isolated critical points of the Poincare time T on hyperbolic polycycles of polynomial vector fields. The result is obtained by proving that the Poincare time of a hyperbolic polycycle either has an unbounded principal part or is an almost regular function. The result relies heavily on the proof of Il'yashenko's theorem on non-accumulation of limit cycles on hyperbolic polycycles.