Search results for "Linear Model"
showing 10 items of 598 documents
Modeling Posidonia oceanica growth data: from linear to generalized linear mixed models
2010
The statistical analysis of annual growth of Posidonia oceanica is traditionally carried out through Gaussian linear models applied to untransformed, or log-transformed, data. In this paper, we claim that there are good reasons for re-considering this established practice, since real data on annual growth often violate the assumptions of Gaussian linear models, and show that the class of Generalized Linear Models (GLMs) represents a useful alternative for handling such violations. By analyzing Sicily PosiData-1, a real dataset on P. oceanica growth data gathered in the period 2000–2002 along the coasts of Sicily, we find that in the majority of cases Normality is rejected and the effect of …
Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models
2013
Summary Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the …
A differential-geometric approach to generalized linear models with grouped predictors
2016
We propose an extension of the differential-geometric least angle regression method to perform sparse group inference in a generalized linear model. An efficient algorithm is proposed to compute the solution curve. The proposed group differential-geometric least angle regression method has important properties that distinguish it from the group lasso. First, its solution curve is based on the invariance properties of a generalized linear model. Second, it adds groups of variables based on a group equiangularity condition, which is shown to be related to score statistics. An adaptive version, which includes weights based on the Kullback-Leibler divergence, improves its variable selection fea…
Adaptive linear rank tests for eQTL studies
2012
Expression quantitative trait loci (eQTL) studies are performed to identify single-nucleotide polymorphisms that modify average expression values of genes, proteins, or metabolites, depending on the genotype. As expression values are often not normally distributed, statistical methods for eQTL studies should be valid and powerful in these situations. Adaptive tests are promising alternatives to standard approaches, such as the analysis of variance or the Kruskal-Wallis test. In a two-stage procedure, skewness and tail length of the distributions are estimated and used to select one of several linear rank tests. In this study, we compare two adaptive tests that were proposed in the literatur…
Visualizing categorical data in ViSta
2003
The modules in the statistical package ViSta related to categorical data analysis are presented These modules are: visualization of frequency data with mosaic and bar plots, correspondence analysis, multiple correspondence analysis and loglinear analysis. All these methods are implemented in ViSta with a big emphasis on plots and graphical representations of data, as well as interactivity for the user with the system. These provide a system that has shown to be easy, useful, and powerful, both for novice and experienced users.
Criteria for Bayesian model choice with application to variable selection
2012
In objective Bayesian model selection, no single criterion has emerged as dominant in defining objective prior distributions. Indeed, many criteria have been separately proposed and utilized to propose differing prior choices. We first formalize the most general and compelling of the various criteria that have been suggested, together with a new criterion. We then illustrate the potential of these criteria in determining objective model selection priors by considering their application to the problem of variable selection in normal linear models. This results in a new model selection objective prior with a number of compelling properties.
Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data
2013
When the study variable is functional and storage capacities are limited or transmission costs are high, selecting with survey sampling techniques a small fraction of the observations is an interesting alternative to signal compression techniques, particularly when the goal is the estimation of simple quantities such as means or totals. We extend, in this functional framework, model-assisted estimators with linear regression models that can take account of auxiliary variables whose totals over the population are known. We first show, under weak hypotheses on the sampling design and the regularity of the trajectories, that the estimator of the mean function as well as its variance estimator …
Estimating completeness in cancer registries--comparing capture-recapture methods in a simulation study.
2008
Completeness of registration is one of the quality indicators usually reported by cancer registries. This allows researchers to assess how useful and representative the data is. Several methods have been suggested to estimate completeness. In this paper a multi-state model for the process of cancer diagnosis and treatment is presented. In principle, every contact with a doctor during diagnosis, treatment, and aftercare can give rise to a cancer registry notification with a certain probability. Therefore the states included in the model are "incident tumour" and "death" but also contacts with doctors such as consultation of a general practitioner or specialised doctor, diagnostic procedures,…
Adaptive designs with correlated test statistics
2009
In clinical trials, the collected observations such as clustered data or repeated measurements are often correlated. As a consequence, test statistics in a multistage design are correlated. Adaptive designs were originally developed for independent test statistics. We present a general framework for two-stage adaptive designs with correlated test statistics. We show that the significance level for the Bauer-Köhne design is inflated for positively correlated test statistics from a bivariate normal distribution. The decision boundary for the second stage can be modified so that type one error is controlled. This general concept is expandable to other adaptive designs. In order to use these de…
Efficiency Bounds for Product Designs in Linear Models
1999
We provide lower efficiency bounds for the best product design for an additive multifactor linear model. The A-optimality criterion is used to demonstrate that out bounds are better than the conventional bounds. Applications to other criteria, such as IMSE (integrated mean squared error) criterion are also indicated. In all the cases, the best product design appears to perform better when there are more levels in each factor but decreases when more factors are included. Explicit efficiency formulas for non-additive models are also constructed.