Search results for "Linear optics"
showing 10 items of 493 documents
Theory of modal attraction in bimodal birefringent optical fibers
2013
Nonlinear mode coupling among two beams of different wavelength that copropagate in a bimodal highly birefringent optical fiber may lead to the effect of modal attraction. Under such circumstances, the modal distribution of light at a pump wavelength is replicated at the signal wavelength, nearly irrespective of the input mode excitation conditions of the signal.
Polarization modulation instability in a Manakov fiber system
2015
International audience; The Manakov model is the simplest multicomponent model of nonlinear wave theory: It describes elementary stable soliton propagation and multisoliton solutions, and it applies to nonlinear optics, hydrodynamics, and Bose-Einstein condensates. It is also of fundamental interest as an asymptotic model in the context of the widely used wavelength-division-multiplexed optical fiber transmission systems. However, although its physical relevance was confirmed by the experimental observation of Manakov (vector) solitons in a planar waveguide in 1996, there have in fact been no quantitative experiments confirming its validity for nonlinear dynamics other than soliton formatio…
Potentialities of glass air-clad micro- and nanofibers for nonlinear optics
2010
Micro- and nanofibers constitute an attractive platform for testing nonlinear devices with millimeter size in a simple and flexible fashion, with potential applications in ultra-fast all-optical communications. In this article, we present challenges that must be addressed and targets that can be reached using such a platform. We describe a tunable laser source capable of delivering pulses with a kilowatt peak power and a sub-0.1-nm linewidth that is specially designed for the study of resonant devices such as the nonlinear loop resonator. Experimental and simulation results are presented for silica microfiber based nonlinear devices. The prospect of developing hybrid devices combining highl…
Nonlinear repolarization dynamics in optical fibers: transient polarization attraction
2011
International audience; In this work, we present a theoretical and experimental study of the response of a lossless polarizer to a signal beam with a time-varying state of polarization (SOP). By lossless polarizer, we mean a nonlinear conservative medium (e.g., an optical fiber) that is counterpumped by an intense and fully polarized pump beam. Such a medium transforms input uniform or random distributions of the SOP of an intense signal beam into output distributions that are tightly localized around a well-defined SOP. We introduce and characterize an important parameter of a lossless polarizer--its response time. Whenever the fluctuations of the SOP of the input signal beam are slower th…
Soft proton exchanged channel waveguides in congruent lithium tantalate for frequency doubling
2010
We report on stable optical waveguides fabricated by soft-proton exchange in periodically-poled congruent lithium tantalate in the a-phase. The channel waveguides are characterized in the telecom wavelength range in terms of both linear properties and frequency doubling. The measurements yield a nonlinear coefficient of about 9.5pm/V, demonstrating that the nonlinear optical properties of lithium tantalate are left nearly unaltered by the process. (C) 2010 Optical Society of America
Novel spectra in the supercontinuum generation with applications in the biodiversity conservation
2014
This paper presents some spectra of the supercontinuum generation obtained with microstructured fibers and tapered fiber devices excited with quasi-continuous pumps. These spectra are part of a group (collection) of multiple configurations that were studied and evaluated by our working group, and that could be very useful in LIDAR as well as bio-imaging applications. This work is limited to present some spectra that could be useful in applications of biodiversity conservation. The prototypes for specific applications will be evaluated in future research.
Towards a Thermodynamic Description of Supercontinuum Generation
2009
Based on the kinetic wave theory, we describe continuous-wave supercontinuum generation as a thermalization process, i.e., an irreversible evolution of the optical field towards a state of maximum nonequilibrium entropy.
Nonlinear Resonance Effects in Pattern Formation in Optical Parametric Oscillators
2005
Linear and nonlinear optical properties of some organoxenon derivatives
2007
We employ a series of state-of-the-art computational techniques to study the effect of inserting one or more Xe atoms in HC2H and HC4H, on the linear and nonlinear optical (L&NLO) properties of the resulting compounds. It has been found that the inserted Xe has a great effect on the L&NLO properties of the organoxenon derivatives. We analyze the bonding in HXeC2H, and the change of the electronic structure, which is induced by inserting Xe, in order to rationalize the observed extraordinary L&NLO properties. The derivatives, which are of interest in this work, have been synthesized in a Xe matrix. Thus the effect of the local field (LF), due to the Xe environment, on the properties of HXeC2…
Visible Light Generation and Its Influence to Supercontinuum in As2S3 Microstructured Fiber
2011
We demonstrate visible light generation in As 2 S 3 microstructured fiber for the first time. It limits the spectral range of supercontinuum. The visible light generation can be avoided by designing the fiber for the single-mode operation.