Search results for "MDA-MB231"
showing 8 items of 8 documents
BIOLOGICAL EFFECTS OF JAHA, A NEW HISTONE DEACETYLASE INHIBITOR, ON CANCER CELLS FROM HUMAN BREAST EPITHELIUM
The histone deacetylase inhibitors (HDACis) are a class of chemically heterogeneous anticancer agents of which suberoylanilide hydroxamic acid (SAHA) is a prototypical member. SAHA derivatives may be obtained by the three-dimensional manipulation of the SAHA aryl cap, such as the incorporation of a ferrocene unit like that present in Jay Amin hydroxamic acid (JAHA) and homo-JAHA (Spencer et al., 2011). These metal-based SAHA analogues have been tested for their cytotoxic activity toward triple-negative MDA-MB231 breast cancer cells. The results obtained indicate that of the two compounds tested, only JAHA was prominently active on breast cancer cells with an IC50 of 8.45 μM at 72 h of treat…
Synthesis and antiproliferative activity of a natural like glycoconjugate polycyclic compound
2016
Abstract A natural like O -glycoconjugate polycyclic compound 4 was obtained by a multistep procedure starting from N -(3-methyl-1-(4-nitrophenyl)-1 H -pyrazol-5-yl)acetamide. The glycosyl derivative 4 showed antiproliferative activity against all the tumoral cell lines of the NCI panel in the range 0.47–5.43 μ M. Cytofluorimetric analysis performed on MDA-MB231, a very aggressive breast cancer cell line, which does not express estrogen, progesterone and HER-2/neu receptors, showed that 4 is able to induce prolonged cell cycle arrest at G2/M phase and morphological signs of differentiation. These events are correlated with down-regulation of both cyclin B1 and cdc2, the cyclins involved in…
Cytotoxicity of the Urokinase-Plasminogen Activator Inhibitor Carbamimidothioic Acid (4-Boronophenyl) Methyl Ester Hydrobromide (BC-11) on Triple-Neg…
2015
BC-11 is an easily synthesized simple thiouronium-substituted phenylboronic acid, which has been shown to be cytotoxic on triple negative MDA-MB231 breast cancer cells by inducing a perturbation of cell cycle when administered at a concentration equal to its ED50 at 72 h (117 μM). Exposure of cells to BC-11, either pre-absorbed with a soluble preparation of the N-terminal fragment of urokinase-plasminogen activator (uPa), or in co-treatment with two different EGFR inhibitors, indicated that: (i) BC-11 acts via binding to the N-terminus of the enzyme where uPa- and EGF receptor-recognizing sites are present, thereby abrogating the growth-sustaining effect resulting from receptor binding
New complex polycyclic compounds: Synthesis, antiproliferative activity and mechanism of action
2020
Abstract Polycyclic or O-glycoconiugate polycyclic compounds 1a-g were previously tested for their in vitro antiproliferative activity. In this series of compounds, activity increases as log P decreases. Specifically, compounds 1d and 1g showed lower log P values together with the best antiproliferative profiles. With the aim of extending our understanding of the structure–activity relationship (SAR) of this class of compounds, we prepared new polycyclic derivatives 2a-c, which bear on each of the two phenyl rings hydrophilic substituents (OH, SO2NH2 or NHCOCH3). These substituents are able to form hydrogen bonds and to decrease the partition coefficient value as compared with compound 1d. …
Molecular Signatures Associated with Treatment of Triple-Negative MDA-MB231 Breast Cancer Cells with Histone Deacetylase Inhibitors JAHA and SAHA
2017
Jay Amin Hydroxamic Acid (JAHA; N8-ferrocenylN1-hydroxy-octanediamide) is a ferrocene-containing analogue of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA). JAHA’s cytotoxic activity on MDA-MB231 triple negative breast cancer (TNBC) cells at 72 h has been previously demonstrated with an IC50 of 8.45 M. JAHA’s lethal effect was found linked to perturbations of cell cycle, mitochondrial activity, signal transduction and autophagy mechanisms. In order to glean novel insights on how MDA-MB231 breast cancer cells respond to the cytotoxic effect induced by JAHA, and to compare the biological effect with the related compound SAHA, we have employed a combination of…
Midregion PTHrP and Human Breast Cancer Cells
2010
PTHrP is a polyhormone undergoing proteolytic processing into smaller bioactive forms, comprising an N-terminal peptide, which is the mediator of the “classical” PTH-like effect, as well as midregion and C-terminal peptides. The midregion PTHrP domain (38-94)-amide was found to restrain growth and invasionin vitroof some breast cancer cell lines, causing striking toxicity and accelerating death; the most responsive being MDA-MB231, whose tumorigenesis was also attenuatedin vivo. In addition, midregion PTHrP appears to be imported in the nucleoplasm of cultured MDA-MB231 cells andin vitro, it can bind chromatin of metaphase spread preparations and also an isolated 20-mer oligonucleotide, the…
Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells
2016
We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide\ud hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor\ud (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast\ud cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically\ud synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-\ud 5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on\ud cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation,\ud an…
Clivaggio e shuttling nucleo-citoplasmatico della proteina Sirt1, in cellule di carcinoma mammario MDA-MB231.
2013
Sirt1 è una proteina nota per il suo ruolo di istone deacetilasi NAD+ dipendente che sembra essere coinvolta in una ampia gamma di processi cellulari, quali regolazione genica, controllo dello stato metabolico, meccanismi di sopravvivenza allo stress. Dalla letteratura emergono dati contrastanti concernenti la funzione di Sirt1 nei tumori, le vengono infatti attribuiti ruoli sia di oncogene che di soppressore tumorale, argomento fortemente dibattuto. A conferma di ciò, la localizzazione subcellulare e la funzione di Sirt1 variano nei differenti tipi cellulari (1). E’ anche noto che Sirt1 risulta frequentemente clivata in varie linee cellulari grazie ad attività proteolitiche nucleari (2). Q…