Search results for "MDA"

showing 10 items of 275 documents

Anthocyanins of Coloured Wheat Genotypes in Specific Response to SalStress

2018

The present study investigated the effect of salt stress on the development of adaptive responses and growth parameters of different coloured wheat genotypes. The different coloured wheat genotypes have revealed variation in the anthocyanin content, which may affect the development of adaptive responses under increasing salinity stress. In the early stage of treatment with salt at a lower NaCl concentration (100 mM), anthocyanins and proline accumulate, which shows rapid development of the stress reaction. A dose-dependent increase in flavonol content was observed for wheat genotypes with more intense purple-blue pigmentation after treatment with 150 mM and 200 mM NaCl. The content of Na⁺ a…

0106 biological sciences0301 basic medicineflavonolMDAColorPharmaceutical ScienceSodium Chloride01 natural sciencesArticleSalinity stressAnalytical Chemistrysalinitylcsh:QD241-44103 medical and health scienceschemistry.chemical_compoundlcsh:Organic chemistryDry weightStress PhysiologicalwheatDrug DiscoveryGenotypeDry matterProlinePhysical and Theoretical ChemistryprolineTriticumPigmentationChemistryOrganic Chemistryfood and beveragesSalt ToleranceanthocyaninsSalinityHorticulture030104 developmental biologyChemistry (miscellaneous)AnthocyaninMolecular MedicineAfter treatment010606 plant biology & botanyMolecules
researchProduct

Involvement of putative glutamate receptors in plant defence signaling and NO production

2011

International audience; Ionotropic glutamate receptors (iGluRs) are non-selective cation channels permeable to calcium, present in animals and plants. In mammals, glutamate is a well-known neurotransmitter and recently has been recognized as an immunomodulator. As animals and plants share common mechanisms that govern innate immunity with calcium playing a key role in plant defence activation, we have checked the involvement of putative iGluRs in plant defence signaling. Using tobacco cells, we first provide evidence supporting the activity of iGluRs as calcium channels and their involvement in NO production as reported in animals. Thereafter, iGluRs were shown to be activated in response t…

0106 biological sciencesHypersensitive responsebiochemistry and molecular biologyplant defenceglutamate receptorCell Culture TechniquesGlutamic AcidBiologycalcium signaling01 natural sciencesBiochemistrytobaccoFungal Proteins03 medical and health sciencesnitric oxideelicitorsExcitatory Amino Acid Agonists[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyrésistance végétalePlant Proteins030304 developmental biologyCalcium signaling0303 health sciencesVoltage-dependent calcium channelAlgal ProteinsGlutamate receptorGeneral MedicineGlutamic acidImmunity InnateElicitortabacReceptors GlutamateBiochemistryMetabotropic glutamate receptorNMDA receptorCalciumExcitatory Amino Acid Antagonists010606 plant biology & botany
researchProduct

The Secreted Protein C10orf118 Is a New Regulator of Hyaluronan Synthesis Involved in Tumour-Stroma Cross-Talk.

2021

Simple Summary Hyaluronan is a main glycosaminoglycan in extracellular matrix with an important role in breast cancer progression. Alterations in its synthesis and size may affect tu-mour growth and metastasis. Communication between stromal and breast cancer cells consists of the secretion of factors that provoke a series of cell signalling that influence cell fate and tis-sue microenvironment, by favouring tumour cell survival and motility. Here, we present the c10orf118 protein expressed in high amounts by breast tumour cells as a new regulator in hya-luronan synthesis. This protein is found both in Golgi and secreted in the extracellular matrix, whereas its role is still unknown. The sec…

0301 basic medicineCancer ResearchChemokineBreast cancer; Estrogen receptor; Golgin104; Hyaluronan; Hyaluronan synthase 2; MCF-7; MDA-MB-231; Tumour microenvironmentMDA-MB-231Estrogen receptorBiologyHyaluronan Synthase 2lcsh:RC254-282ArticlehyaluronanGlycosaminoglycan03 medical and health scienceshyaluronan synthase 2breast cancer0302 clinical medicinemedicineSecretionCancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseCell biology030104 developmental biologyOncologyMCF-7030220 oncology & carcinogenesisCancer cellbiology.proteingolgin104MCF-7tumour microenvironmentestrogen receptorCancers
researchProduct

Synthesis and antiproliferative activity of a natural like glycoconjugate polycyclic compound

2016

Abstract A natural like O -glycoconjugate polycyclic compound 4 was obtained by a multistep procedure starting from N -(3-methyl-1-(4-nitrophenyl)-1 H -pyrazol-5-yl)acetamide. The glycosyl derivative 4 showed antiproliferative activity against all the tumoral cell lines of the NCI panel in the range 0.47–5.43  μ M. Cytofluorimetric analysis performed on MDA-MB231, a very aggressive breast cancer cell line, which does not express estrogen, progesterone and HER-2/neu receptors, showed that 4 is able to induce prolonged cell cycle arrest at G2/M phase and morphological signs of differentiation. These events are correlated with down-regulation of both cyclin B1 and cdc2, the cyclins involved in…

0301 basic medicineCell cycle checkpointCell SurvivalReceptor ErbB-2StereochemistryGlycoconjugateAntineoplastic AgentsAntiproliferative activityChemistry Techniques Synthetic03 medical and health sciences0302 clinical medicineCyclin-dependent kinaseCell Line TumorDrug DiscoveryHumansPolycyclic CompoundsMDA-MB231Cyclin B1Cell ProliferationCyclinPharmacologychemistry.chemical_classificationBiological ProductsCyclin-dependent kinase 1G2/M phase arrestp21WAF1 inhibitorbiologyChemistryKinaseDrug Discovery3003 Pharmaceutical ScienceO-glycoconjugate polycyclic compoundOrganic ChemistryGeneral MedicineMolecular biologyG2 Phase Cell Cycle CheckpointsGene Expression Regulation Neoplastic030104 developmental biologyCell culturePyrazolo[34-b]pyrazolo[3′4′:23]azepino[45-f]azocineDrug Design030220 oncology & carcinogenesisbiology.proteinM Phase Cell Cycle CheckpointsReceptors ProgesteroneGlycoconjugatesEuropean Journal of Medicinal Chemistry
researchProduct

Chemical Composition, In Vitro Antitumor and Pro-Oxidant Activities of Glandora rosmarinifolia (Boraginaceae) Essential Oil

2018

The biological properties of essential oils have been demonstrated in the treatment of several diseases and to enhance the bioavailability of other drugs. In natural habitats the essential oils compounds may play important roles in the protection of the plants as antibacterials, antivirals, antifungals, insecticides and also against herbivores by reducing their appetite for such plants or by repelling undesirable others. We analyzed by gas-chromatography mass spectrometry the chemical composition of the essential oil of aerial parts of Glandora rosmarinifolia (Ten.) D.C. Thomas obtained by hydrodistillation and verified some biological activities on a panel of hepatocellular carcinoma cell …

0301 basic medicineChemical RadicalsAntioxidantmedicine.medical_treatmentMDA-MB-231Cancer Treatmentlcsh:MedicinenaphthoquinoneChemical CompositionBiochemistryPhysical ChemistryditerpeneAntioxidantslaw.invention0302 clinical medicinelawBreast TumorsSUM 149Medicine and Health SciencesBioassaySettore BIO/15 - Biologia FarmaceuticaCytotoxicitylcsh:ScienceMultidisciplinarybiologyTraditional medicineChemistryLiver DiseasesBoraginaceaeBoraginaceaeOxidantsHep3BLipidsChemistryOncology030220 oncology & carcinogenesisPhysical SciencesResearch ArticleHepG2Free RadicalsCell SurvivalGastroenterology and HepatologyCarcinomas03 medical and health sciencesInhibitory Concentration 50Cell Line TumorAromatic HydrocarbonsGastrointestinal TumorsBreast CancermedicineOils VolatileHumansPlant OilsEssential oilcytotoxic activityHA22T/VGH; HepG2; Hep3B; SUM 149; MDA-MB-231; cytotoxic activity; diterpenes; naphthoquinones; plant secondary metabolitesVolatile Organic CompoundsDose-Response Relationship DrugCell growthPlant ExtractsHA22T/VGHlcsh:RChemical CompoundsBiology and Life SciencesCancers and NeoplasmsEpithelial CellsHepatocellular CarcinomaSettore CHIM/06 - Chimica OrganicaPlant Components Aerialbiology.organism_classificationPro-oxidantplant secondary metabolitesAntineoplastic Agents PhytogenicHydrocarbonsBioavailability030104 developmental biologySettore BIO/03 - Botanica Ambientale E ApplicataHepatocytesSettore BIO/14 - Farmacologialcsh:QOils
researchProduct

The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons

2017

N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …

0301 basic medicineDendritic spineDendritic SpinesHippocampusHippocampal formationBiologyHippocampusReceptors N-Methyl-D-Aspartate03 medical and health sciences0302 clinical medicineInterneuronsAnimalsReceptorCells CulturedMice KnockoutPyramidal Cellsmusculoskeletal neural and ocular physiologyGeneral NeuroscienceLong-term potentiationSpine030104 developmental biologySomatostatinnervous systemExcitatory postsynaptic potentialNMDA receptorSomatostatinNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

2017

N-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to …

0301 basic medicineDendritic spineorganotypic culturesEn passantHippocampusHippocampal formationBiologyspine dynamicslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchMK-801interneuronsmusculoskeletal neural and ocular physiologyaxonal boutonsNMDARSpine (zoology)030104 developmental biologynervous systemExcitatory postsynaptic potentialNMDA receptorNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Prevention of an increase in cortical ligand binding to AMPA receptors may represent a novel mechanism of endogenous brain protection by G-CSF after …

2016

PURPOSE Using G-CSF deficient mice we recently demonstrated neuroprotective properties of endogenous G-CSF after ischemic stroke. The present follow-up study was designed to check, whether specific alterations in ligand binding densities of excitatory glutamate or inhibitory GABAA receptors may participate in this effect. METHODS Three groups of female mice were subjected to 45 minutes of MCAO: wildtype, G-CSF deficient and G-CSF deficient mice substituted with G-CSF. Infarct volumes were determined after 24 hours and quantitative in vitro receptor autoradiography was performed using [3H]MK-801, [3H]AMPA and [3H]muscimol for labeling of NMDA, AMPA and GABAA receptors, respectively. Ligand b…

0301 basic medicineExcitotoxicityAMPA receptorPharmacologymedicine.disease_causeReceptors N-Methyl-D-AspartateNeuroprotectionBrain IschemiaMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDevelopmental NeuroscienceGranulocyte Colony-Stimulating FactormedicineAnimalsReceptors AMPAReceptorGABAA receptorGlutamate receptorReceptors GABA-ANeuroprotectionStroke030104 developmental biologynervous systemNeurologyMuscimolchemistryAutoradiographyNMDA receptorFemaleNeurology (clinical)030217 neurology & neurosurgeryRestorative Neurology and Neuroscience
researchProduct

In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity.

2015

In multiple sclerosis (MS), a candidate downstream mechanism for neuronal injury is glutamate (Glu)-induced excitotoxicity, leading to toxic increases in intraneuronal Ca(2+) . Here, we used in vivo two-photon imaging in the brain of TN-XXL transgenic Ca(2+) reporter mice to test whether promising oral MS therapeutics, namely fingolimod, dimethyl fumarate, and their respective metabolites fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. We also assessed whether these drugs can protect against excitotoxicity in vitro using primary cortical neurons, and whether they can directly inhibit Glu release from pathogenic T-helper 17 ly…

0301 basic medicineKainic acidMultiple SclerosisExcitotoxicityGlutamic AcidPharmacologyBiologymedicine.disease_causeBiochemistryNeuroprotectionImmunomodulation03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineIn vivomedicineAnimalsCells CulturedNeuronsKainic AcidDimethyl fumarateCell DeathGlutamate receptorNeurotoxicityBrainmedicine.diseaseUp-Regulation030104 developmental biologyNeuroprotective AgentschemistryNMDA receptor030217 neurology & neurosurgerySignal TransductionJournal of neurochemistry
researchProduct

Potential Therapeutic Applications of MDA-9/Syntenin-NF-κB-RKIP Loop in Human Liver Carcinoma

2019

Background Overexpression of MDA-9/Syntenin occurs in multiple human cancer cell lines and is associated with higher grade of tumor classification, invasiveness and metastasis. In some cases, its role in cancer biology depends on relationships between MDA-9/Syntenin and NF-κB. Objective This study aims to analyze the presence of a regulation loop like that between MDA-9/Syntenin - NF-κB - RKIP in human liver carcinoma. Methods Transient transfection was performed with siRNA anti-MDA-9/Syntenin. Expression of different factors was evaluated by Real time-PCR and Western blotting, while NF-κB activation by TransAM assay. Invasion capacity was analyzed by Matrigel Invasion Assay and the effects…

0301 basic medicineMDA-9/Syntenin NF-κB RKIP drug targets HA22T/VGH Hep3B HepG2Carcinoma HepatocellularCurcuminSynteninsPhosphatidylethanolamine Binding ProteinBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDownregulation and upregulationAntineoplastic Combined Chemotherapy ProtocolsHumansGene silencingNeoplasm InvasivenessViability assayMolecular BiologyCell growthMatrigel Invasion AssayLiver NeoplasmsNF-kappa BNF-κBHep G2 CellsGeneral MedicineNeoplasm ProteinsBlot030104 developmental biologychemistryDoxorubicinCell cultureSettore BIO/14 - FarmacologiaCancer researchMolecular MedicineSignal Transduction030215 immunologyCurrent Molecular Medicine
researchProduct