6533b838fe1ef96bd12a4620

RESEARCH PRODUCT

Anthocyanins of Coloured Wheat Genotypes in Specific Response to SalStress

Marian BresticOksana SytarChedly AbdellyMarek ZivcakSonia MbarkiArtemio Cerdà

subject

0106 biological sciences0301 basic medicineflavonolMDAColorPharmaceutical ScienceSodium Chloride01 natural sciencesArticleSalinity stressAnalytical Chemistrysalinitylcsh:QD241-44103 medical and health scienceschemistry.chemical_compoundlcsh:Organic chemistryDry weightStress PhysiologicalwheatDrug DiscoveryGenotypeDry matterProlinePhysical and Theoretical ChemistryprolineTriticumPigmentationChemistryOrganic Chemistryfood and beveragesSalt ToleranceanthocyaninsSalinityHorticulture030104 developmental biologyChemistry (miscellaneous)AnthocyaninMolecular MedicineAfter treatment010606 plant biology & botany

description

The present study investigated the effect of salt stress on the development of adaptive responses and growth parameters of different coloured wheat genotypes. The different coloured wheat genotypes have revealed variation in the anthocyanin content, which may affect the development of adaptive responses under increasing salinity stress. In the early stage of treatment with salt at a lower NaCl concentration (100 mM), anthocyanins and proline accumulate, which shows rapid development of the stress reaction. A dose-dependent increase in flavonol content was observed for wheat genotypes with more intense purple-blue pigmentation after treatment with 150 mM and 200 mM NaCl. The content of Na⁺ and K⁺ obtained at different levels of salinity based on dry weight (DW) was more than 3 times greater than the control, with a significant increase of both ions under salt stress. Overall, our results demonstrated that coloured wheat genotypes with high anthocyanin content are able to maintain significantly higher dry matter production after salt stress treatment.

10.3390/molecules23071518http://dx.doi.org/10.3390/molecules23071518