Search results for "MEA"
showing 10 items of 8532 documents
Hyperspectral dimensionality reduction for biophysical variable statistical retrieval
2017
Abstract Current and upcoming airborne and spaceborne imaging spectrometers lead to vast hyperspectral data streams. This scenario calls for automated and optimized spectral dimensionality reduction techniques to enable fast and efficient hyperspectral data processing, such as inferring vegetation properties. In preparation of next generation biophysical variable retrieval methods applicable to hyperspectral data, we present the evaluation of 11 dimensionality reduction (DR) methods in combination with advanced machine learning regression algorithms (MLRAs) for statistical variable retrieval. Two unique hyperspectral datasets were analyzed on the predictive power of DR + MLRA methods to ret…
Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data
2020
Abstract Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radi…
Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring
2020
Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…
Potential of Automated Digital Hemispherical Photography and Wireless Quantum Sensors for Routine Canopy Monitoring and Satellite Product Validation
2021
To better characterize the temporal dynamics of vegetation biophysical variables, a variety of automated in situ measurement techniques have been developed in recent years. In this study, we investigated automated digital hemispherical photography (DHP) and wireless quantum sensors, which were installed at two sites under the Copernicus Ground Based Observations for Validation (GBOV) project. Daily estimates of plant area index (PAI) and the fraction of absorbed photosynthetically active radiation (FAPAR) were obtained, which realistically described expected vegetation dynamics. Good correspondence with manual DHP and LAI-2000 data (RMSE = 0.39 to 0.90 for PAI, RMSE = 0.07 for FAPAR) provid…
Vicarious Calibration of the Landsat 7 Thermal Infrared Band and LST Algorithm Validation of the ETM+ Instrument Using Three Global Atmospheric Profi…
2017
Due to problems in the thermal infrared sensor on-board the Landsat-8 satellite, Landsat-7 (L7) can be an interesting alternative source of thermal data because it is the only source of well-calibrated, free, high-resolution data. To contribute to the quality of thermal data, a vicarious calibration (VC) of the enhanced thematic mapper instrument and a validation of the single-channel general equation and the water vapor approach algorithm in conjunction with an inversion of the radiative transfer equation (RTE) have been performed during 2013–2015 over two Spanish test sites. For this purpose, three global atmospheric profile data sets were used to better characterize the error due to atmo…
Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field
2014
International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…
Empirical and physical estimation of Canopy Water Content from CHRIS/PROBA data
2013
20 páginas, 4 tablas, 7 figuras.
Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow.
2021
In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Establishe…
Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index
2017
This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Res…
Fluid storage and migration properties of sheared Neptunian dykes
2019
Abstract Neptunian dykes are widely reported along the Tethyan carbonate platforms and are commonly considered as subsurface baffles or barriers to fluid flow. However, the fluid storage and migration properties of sheared Neptunian dykes are poorly known. For this reason, we investigate the inner structure and fluid flow properties of two Neptunian dykes, which can be characterized by different architectures if involved or not in brittle shearing processes. The dykes strike ca. WNW-ESE and crosscutting the tight Jurassic limestones exposed at Maranfusa Mt., NW Sicily, Italy. The unsheared and sheared Neptunian dykes are almost sub-vertical and at high-angle with respect to the horizontal p…