Search results for "METABOLISM"
showing 4 items of 5614 documents
Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release
2020
Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery int…
Truncated forms of viral VP2 proteins fused to EGFP assemble into fluorescent parvovirus-like particles
2006
Fluorescence correlation spectroscopy (FCS) monitors random movements of fluorescent molecules in solution, giving information about the number and the size of for example nano-particles. The canine parvovirus VP2 structural protein as well as N-terminal deletion mutants of VP2 (-14, -23, and -40 amino acids) were fused to the C-terminus of the enhanced green fluorescent protein (EGFP). The proteins were produced in insect cells, purified, and analyzed by western blotting, confocal and electron microscopy as well as FCS. The non-truncated form, EGFP-VP2, diffused with a hydrodynamic radius of 17 nm, whereas the fluorescent mutants truncated by 14, 23 and 40 amino acids showed hydrodynamic r…
Additional file 2 of COVID-19: viral–host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection
2020
Additional file 2: Figure S1. Pairwise distances along 259 full length CoV genomes. In the bottom of picture, indicative gene positioning along CoVs genomes is reported. The list of all considered genomes is reported in Additional file 1: Table S1. Figure S2. 3D structure of S-glycoprotein of SARS-CoV-2 and comparison with the ortholog from HCoV-229E, SARS-CoV, and MERS-CoV. Lateral (a) and superior (b) representation of SARS-CoV-2 S-glycoprotein, deducted for the sequence of patient INMI1 (MT066156.1). Each subunit chain has a different color. Structure comparison of S-glycoprotein subunit between: HCoV-229E and SARS-CoV-2, in purple and blue respectively (c); SARS-CoV and SARS-CoV-2, in r…
Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency
2016
Article