Search results for "METALLODRUG"

showing 7 items of 7 documents

Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?

2017

Activation of anticancer therapeutics such as ruthenium (Ru) complexes is currently a topic of intense investigation. The success of phototherapy relies on photoactivation of therapeutics after the light passes through skin and tissue. In this paper, the photoactivation of anticancer Ru complexes with 671-nm red light through tissue of different thicknesses was studied. Four photoactivatable Ru complexes with different absorption wavelengths were synthesized. Two of them (Ru3 and Ru4) were responsive to wavelengths in the “therapeutic window” (650–900 nm) and could be activated using 671-nm red light after passing through tissue up to 16-mm-thick. The other two (Ru1 and Ru2) could not be ac…

Cell SurvivalInfrared Rayschemistry.chemical_elementAntineoplastic Agents02 engineering and technologyAbsorption (skin)010402 general chemistryPhotochemistry01 natural sciencesCatalysisRutheniumMETALLODRUGDeep tissueCoordination ComplexesHumansRed lightPHOTOTHERAPYTherapeutic windowChemistryPHOTOCHEMISTRYOtras Ciencias QuímicasOrganic ChemistryLight activatedCiencias QuímicasGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesRutheniumRU COMPLEXSpectrophotometryCancer cellANTICANCER0210 nano-technologyCIENCIAS NATURALES Y EXACTASHeLa Cells
researchProduct

Cytotoxic Activity of Organotin(IV) Derivatives with Triazolopyrimidine Containing Exocyclic Oxygen Atoms

2020

In this study cytotoxicity of organotin(IV) compounds with 1,2,4-triazolo[1,5-a]pyrimidines, Me3Sn(5tpO) (1), n-Bu3Sn(5tpO) (2), Me3Sn(mtpO) (3), n-Bu3Sn(mtpO) (4), n-Bu3Sn(HtpO2) (5), Ph3Sn(HtpO2) (6) where 5HtpO = 4,5-dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, HmtpO = 4,7-dihydro-5-methyl-7-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, and H2tpO2 = 4,5,6,7-tetrahydro-5,7- dioxo-[1,2,4]triazolo-[1,5-a]-pyrimidine, was assessed on three different human tumor cell lines: HCT-116 (colorectal carcinoma), HepG2 (hepatocarcinoma) and MCF-7 (breast cancer). While 1 and 3 were inactive, compounds 2, 4, 5 and 6 inhibited the growth of the three tumor cell lines with IC50 values in the submicromolar …

DenticityCellPharmaceutical Science01 natural sciencesAnalytical Chemistrychemistry.chemical_compoundDrug DiscoveryOrganotin CompoundstriazolopyrimidineCytotoxicityMembrane Potential MitochondrialCytotoxinsapoptosisBiological activityHep G2 CellsG2 Phase Cell Cycle CheckpointsGene Expression Regulation Neoplasticmedicine.anatomical_structureChemistry (miscellaneous)Mitochondrial MembranesMCF-7 CellsMolecular MedicineCyclin-Dependent Kinase Inhibitor p21crystal structurein vitro anticancer activityPyrimidineCell SurvivalStereochemistryorganotin(iv)010402 general chemistryArticlelcsh:QD241-441Inhibitory Concentration 50Structure-Activity Relationshiplcsh:Organic chemistrymedicineHumansPhysical and Theoretical ChemistryMetallodrug010405 organic chemistryLigandOrganic ChemistryTriazolesHCT116 CellsapoptosiG1 Phase Cell Cycle Checkpoints0104 chemical sciencesPyrimidineschemistrymetallodrugsCell cultureApoptosisDrug DesignTumor Suppressor Protein p53Reactive Oxygen SpeciesMolecules
researchProduct

Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η5-C5H5)(PPh3)2]+ as Promising Drugs Against Cisplatin-Resistant Ca…

2018

Here and for the first time, we show that the organometallic compound [Ru(&eta

Pharmaceutical Sciencecisplatin01 natural sciencesAnalytical ChemistrydendrimersCoordination ComplexesDrug DiscoveryMoietyplatinummetallitta116Molecular StructureChemistrymolekyylitnanomedicineNanomedicineChemistry (miscellaneous)MCF-7 CellsMolecular MedicineplatinaDendrimersEpithelial-Mesenchymal TransitionCell SurvivalAntineoplastic Agents.myrkyllisyys010402 general chemistryArticlecancer treatmentlcsh:QD241-441Faculdade de Ciências Exatas e da Engenharialcsh:Organic chemistryDendrimerCell Line TumorOrganometallic CompoundsHumansPhysical and Theoretical ChemistryrutheniumPlatinumCell ProliferationTumor microenvironmentCancer och onkologiToxicitynanocarrierssyöpähoidot010405 organic chemistryOrganic ChemistryMesenchymal stem celltoxicityMesenchymal Stem CellsCombinatorial chemistrykantasolutnanolääketiede0104 chemical scienceslääkkeetTumor progressionCell cultureDrug Resistance NeoplasmmetallodrugsCancer and OncologyCancer cellNanocarriersCaco-2 CellsDrug Screening Assays Antitumor<i>cisplatin</i>hMSCs
researchProduct

124I Radiolabeling of a AuIII‐NHC Complex for In Vivo Biodistribution Studies†

2020

Abstract AuIII complexes with N‐heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII‐NHC complexes by direct oxidation with radioactive [124I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII‐to‐AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII‐NHC prodrug is not immediately reduced after administration but able to reach the major…

Imaging Agents | Hot Paperpositron emission tomography010405 organic chemistryChemistryGeneral ChemistryProdrug010402 general chemistryanticancer01 natural sciencesCombinatorial chemistryCatalysisIn vitro3. Good health0104 chemical sciencesIn vivoIn vivo biodistributionSettore CHIM/03 - Chimica Generale E InorganicametallodrugsN-heterocyclic carbenesanticancer; metallodrugs; N-heterocyclic carbenes; positron emission tomography; radiochemistryradiochemistryResearch ArticlesResearch ArticleAngewandte Chemie (International Ed. in English)
researchProduct

DNA Binding Studies and Cytotoxicity of a Dinuclear PtII Diazapyrenium- Based Metallo-supramolecular Rectangular Box

2012

The interaction with native DNA of a 2,7-diazapyrenium-based ligand 1 and its Pt II rectangular metal- lacycle 2 is explored through circular and linear dichroism and fluorescence spectroscopies. The metal-free ligand 1 binds through intercalation, with a binding constant of approximately 5 � 10 5 m � 1 , whereas the metallacycle 2 binds and bends the DNA with a bind- ing constant of 7 � 10 6 m � 1 . PCR assays show that metallo-supramolecular box 2 interferes with DNA transactions in vitro whereas the intercalator 1 does not. The metallacycle is active against four human cancer cell lines, with IC50 values ranging between 3.1 and 19.2 mm and shows similar levels of efficacy, but a differen…

Organoplatinum CompoundsCell SurvivalStereochemistryIntercalation (chemistry)Molecular ConformationSupramolecular chemistryAntineoplastic AgentsApoptosisLigandsNucleic Acid DenaturationLinear dichroismCatalysissupramolecular chemistryInhibitory Concentration 50chemistry.chemical_compoundCell Line TumorSettore BIO/10 - BiochimicaHumansmetallodrugPlatinumnoncovalent DNA bindingChemistryCircular DichroismOrganic ChemistryDNA NeoplasmGeneral ChemistrySettore CHIM/06 - Chimica OrganicaMetallacycleLigand (biochemistry)Binding constantFluorescenceSettore CHIM/08 - Chimica FarmaceuticaIntercalating AgentsKineticsSpectrometry FluorescenceSettore CHIM/03 - Chimica Generale E InorganicaThermodynamicscytotoxicityPtII rectangular boxCisplatinDNAPhenanthrolines
researchProduct

Catalysis Concepts in Medicinal Inorganic Chemistry

2018

Catalysis has strongly emerged in the field of medicinal inorganic chemistry as a suitable tool to deliver new drug candidates and to overcome drawbacks associated to metallodrugs. In this Concept article, we discuss representative examples of how catalysis has been applied in combination with metal complexes to deliver new therapy approaches. In particular, we explain key achievements in the design of catalytic metallodrugs that damage biomolecular targets and in the development of metal catalysis schemes for the activation of exogenous organic prodrugs. Moreover, we discuss our recent discoveries on the flavin-mediated bioorthogonal catalytic activation of metal-based prodrugs; a new cata…

antiproliferationChemistry PharmaceuticalInorganic chemistryAntineoplastic Agents010402 general chemistry01 natural sciencesCatalysisCatalysisCatalysibioinorganic chemistryAntineoplastic AgentCoordination ComplexesInorganic ChemicalHumansProdrugsmetallodrugInorganic ChemicalphotochemistryCoordination Complexe010405 organic chemistryChemistryOrganic ChemistryGeneral Chemistry0104 chemical sciencesInorganic ChemicalsSettore CHIM/03 - Chimica Generale E InorganicaBioorthogonal chemistryprodrugHuman
researchProduct

Frontiers of metal-coordinating drug design

2020

INTRODUCTION: The occurrence of metal ions in biomolecules is required to exert vital cellular functions. Metal-containing biomolecules can be modulated by small-molecule inhibitors targeting their metal-moiety. As well, the discovery of cisplatin ushered the rational discovery of metal-containing-drugs. The use of both drug types exploiting metal–ligand interactions is well established to treat distinct pathologies. Therefore, characterizing and leveraging metal-coordinating drugs is a pivotal, yet challenging, part of medicinal chemistry. AREA COVERED: Atomic-level simulations are increasingly employed to overcome the challenges met by traditional drug-discovery approaches and to compleme…

DrugaromataseComputer sciencemedia_common.quotation_subject1.1 Normal biological development and functioningChemistry PharmaceuticalCellular functionsCYP450Antineoplastic AgentsComputational biologyLigandsQM/MMArticleruthenium drug03 medical and health sciences0302 clinical medicinebreast cancerUnderpinning researchCoordination ComplexesRAPTADrug Discoverymetal-binding inhibitorsHumansComputer SimulationPharmacology & Pharmacy030304 developmental biologymedia_commonQM0303 health sciencesMetallodrugPharmacology and Pharmaceutical Sciencesmetallo-beta-lacatamasesMMprostate cancermolecular dynamicsChemistry5.1 PharmaceuticalsMetals030220 oncology & carcinogenesisDrug DesignPharmaceuticalGeneric health relevanceDevelopment of treatments and therapeutic interventions
researchProduct