Search results for "METHODOLOGIES"

showing 10 items of 2106 documents

Codimension growth of central polynomials of Lie algebras

2019

Abstract Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like ( dim ⁡ L ) n {(\dim L)^{n}} .

010101 applied mathematicsPure mathematicsExponential growthApplied MathematicsGeneral MathematicsComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION010102 general mathematicsLie algebraCodimension0101 mathematics01 natural sciencesMathematicsForum Mathematicum
researchProduct

Computational volumetric reconstruction of integral imaging with improved depth resolution considering continuously non-uniform shifting pixels

2018

Abstract In this paper, we propose a new computational volumetric reconstruction technique of three-dimensional (3D) integral imaging for depth resolution enhancement by using non-uniform and integer-valued shifting pixels. In a typical integral imaging system, 3D images can be recorded and visualized using a lenslet array. In previous studies, many computational reconstruction techniques such as computational volumetric reconstruction and pixel of elemental images rearrangement technique (PERT) have been reported. However, a computational volumetric reconstruction technique has low visual quality and depth resolution because low-resolution elemental images and uniformly distributed shiftin…

010302 applied physicsIntegral imagingPixelLenslet arrayComputer sciencebusiness.industryMechanical EngineeringResolution (electron density)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONÒptica01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVolumetric reconstruction010309 opticsQuality (physics)0103 physical sciencesComputer visionArtificial intelligenceElectrical and Electronic EngineeringbusinessImatges Processament Tècniques digitalsComputingMethodologies_COMPUTERGRAPHICS
researchProduct

Integral-Imaging display from stereo-Kinect capture

2017

In this paper, we propose a new approach in order to improve the quality of microimages and display them onto an integral imaging monitor. Our main proposal is based on the stereo-hybrid 3D camera system. Originally, hybrid camera system has dissimilarity itself. We interpret our method in order to equalize the hybrid sensor's characteristics and 3D data modification strategy. We generate integral image by using synthetic back-projection mapping method. Finally, we project the integral image onto our proposed display system. We illustrate this procedure with some imaging experiments in order to prove an advantage of our approach.

010302 applied physicsIntegral imagingbusiness.industryComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPoint cloudStereo display01 natural sciencesÒptica Aparells i instrumentsImage (mathematics)010309 opticsComputer graphics (images)0103 physical sciences3d cameraComputer visionArtificial intelligencebusinessThree-Dimensional Imaging, Visualization, and Display 2017
researchProduct

Integral imaging with Fourier-plane recording

2017

Integral Imaging is well known for its capability of recording both the spatial and the angular information of threedimensional (3D) scenes. Based on such an idea, the plenoptic concept has been developed in the past two decades, and therefore a new camera has been designed with the capacity of capturing the spatial-angular information with a single sensor and after a single shot. However, the classical plenoptic design presents two drawbacks, one is the oblique recording made by external microlenses. Other is loss of information due to diffraction effects. In this contribution report a change in the paradigm and propose the combination of telecentric architecture and Fourier-plane recordin…

010302 applied physicsMicrolensDiffractionIntegral imagingPlane (geometry)Computer sciencebusiness.industryComputationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOblique case01 natural sciencesÒptica Aparells i instruments010309 opticssymbols.namesakeFourier transformOptics0103 physical sciencessymbolsComputer visionDepth of fieldArtificial intelligenceFourier Anàlisi debusinessThree-Dimensional Imaging, Visualization, and Display 2017
researchProduct

Optimized Class-Separability in Hyperspectral Images

2016

International audience; Image visualization techniques are mostly based on three bands as RGB color composite channels for human eye to characterize the scene. This, however, is not effective in case of hyper-spectral images (HSI) because they contain dozens of informative spectral bands. To eliminate redundancy of spectral information among these bands, dimensionality reduction (DR) is applied while at the same trying to retain maximum information. In this paper, we propose a new method of information-preserved hyper-spectral satellite image visualization that is based on fusion of unsupervised band selection techniques and color matching function (CMF) stretching. The results show consist…

010504 meteorology & atmospheric sciencesBand SelectionComputer science0211 other engineering and technologiesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[SDU.STU]Sciences of the Universe [physics]/Earth Sciences02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing01 natural sciencesTransformation[SPI]Engineering Sciences [physics][ SPI.NRJ ] Engineering Sciences [physics]/Electric powerDisplay[ SPI ] Engineering Sciences [physics]Computer visionclass separabilityFusion021101 geological & geomatics engineering0105 earth and related environmental sciencesColor imagebusiness.industry[SPI.NRJ]Engineering Sciences [physics]/Electric powerHyperspectral imagingPattern recognition[ SDU.STU ] Sciences of the Universe [physics]/Earth SciencesImage segmentationSpectral bandsDimensionality reductionVisualization[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsImaging spectroscopyFull spectral imagingRGB color modelArtificial intelligencehyper-spectral image visualizationbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Automotive Radar in a UAV to Assess Earth Surface Processes and Land Responses

2020

The use of unmanned aerial vehicles (UAVs) in earth science research has drastically increased during the last decade. The reason being innumerable advantages to detecting and monitoring various environmental processes before and after certain events such as rain, wind, flood, etc. or to assess the current status of specific landforms such as gullies, rills, or ravines. The UAV equipped sensors are a key part to success. Besides commonly used sensors such as cameras, radar sensors are another possibility. They are less known for this application, but already well established in research. A vast number of research projects use professional radars, but they are expensive and difficult to hand…

010504 meteorology & atmospheric sciencesComputer scienceUAVReal-time computingComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesComputerApplications_COMPUTERSINOTHERSYSTEMS77 GHz02 engineering and technologylcsh:Chemical technology01 natural sciencesBiochemistryArticleAnalytical Chemistrylaw.inventionARS-408lawlcsh:TP1-1185ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSElectrical and Electronic EngineeringRadarInstrumentationARS-404021101 geological & geomatics engineering0105 earth and related environmental sciencesRadarAtomic and Molecular Physics and OpticsEarth surfaceAutomotive radarKey (cryptography)Sensors
researchProduct

FAME: Software for analysing rock microstructures

2016

Determination of rock microstructures leads to a better understanding of the formation and deformation of polycrystalline solids. Here, we present FAME (Fabric Analyser based Microstructure Evaluation), an easy-to-use MATLAB®-based software for processing datasets recorded by an automated fabric analyser microscope. FAME is provided as a MATLAB®-independent Windows® executable with an intuitive graphical user interface. Raw data from the fabric analyser microscope can be automatically loaded, filtered and cropped before analysis. Accurate and efficient rock microstructure analysis is based on an advanced user-controlled grain labelling algorithm. The preview and testing environments simplif…

010504 meteorology & atmospheric sciencesComputer sciencebusiness.industryOrientation (computer vision)AnalyserComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONcomputer.file_format010502 geochemistry & geophysics01 natural sciencesVisualizationSoftwareComputer graphics (images)Batch processingExecutableComputers in Earth SciencesbusinesscomputerSimulation0105 earth and related environmental sciencesInformation SystemsRock microstructureGraphical user interfaceComputers & Geosciences
researchProduct

SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information

2018

Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.

010504 meteorology & atmospheric sciencesContextual image classificationComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesHigh resolutionPattern recognition02 engineering and technologySpace (commercial competition)01 natural sciencesSupport vector machineSatelliteArtificial intelligencebusiness021101 geological & geomatics engineering0105 earth and related environmental sciencesProceedings of the 12th International Conference on Intelligent Systems: Theories and Applications
researchProduct

SAR Image Classification Combining Structural and Statistical Methods

2011

The main objective of this paper is to develop a new technique of SAR image classification. This technique combines structural parameters, including the Sill, the slope, the fractal dimension and the range, with statistical methods in a supervised image classification. Thanks to the range parameter, we define the suitable size of the image window used in the proposed approach of supervised image classification. This approach is based on a new way of characterising different classes identified on the image. The first step consists in determining relevant area of interest. The second step consists in characterising each area identified, by a matrix. The last step consists in automating the pr…

010504 meteorology & atmospheric sciencesContextual image classificationbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONProcess (computing)Pattern recognition02 engineering and technology01 natural sciencesFractal dimensionImage (mathematics)Range (mathematics)Matrix (mathematics)Fractal[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceVariogrambusinessComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesMathematics
researchProduct

Modelling Complex Volume Shape Using Ellipsoid: Application to Pore Space Representation

2017

Natural shapes have complex volume forms that are usually difficult to model using simple analytical equations. The complexity of the representation is due to the heterogeneity of the physical environment and the variety of phenomena involved. In this study we consider the representation of the porous media. Thanks to the technological advances in Computed Topography scanners, the acquisition of images of complex shapes becomes possible. However, and unfortunately, the image data is not directly usable for simulation purposes. In this paper, we investigate the modeling of such shapes using a piece wise approximation of image data by ellipsoids. We propose to use a split-merge strategy and a…

010504 meteorology & atmospheric sciencesScale (ratio)Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONTangentApproximation algorithmContext (language use)02 engineering and technologyComputational geometry01 natural sciencesEllipsoid0202 electrical engineering electronic engineering information engineeringPiecewise020201 artificial intelligence & image processingRepresentation (mathematics)AlgorithmComputingMethodologies_COMPUTERGRAPHICS0105 earth and related environmental sciences2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)
researchProduct