Search results for "MIL"
showing 10 items of 29279 documents
Preface for MMM 2016 focus issue
2017
International audience
High-frequency electrodeless lamps in argon–mercury mixtures
2005
In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon–mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths λ = 404.66, 435.83, 546.07 nm (7 3S1–6 3P0,1,2) and the resonance line λ = 253.7 nm (6 3 P1–6 1S0) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line…
Ionization efficiency studies with charge breeder and conventional electron cyclotron resonance ion source
2013
Radioactive Ion Beams play an increasingly important role in several European research facility programs such as SPES, SPIRAL1 Upgrade, and SPIRAL2, but even more for those such as EURISOL. Although remarkable advances of ECRIS charge breeders (CBs) have been achieved, further studies are needed to gain insight on the physics of the charge breeding process. The fundamental plasma processes of charge breeders are studied in the frame of the European collaboration project, EMILIE, for optimizing the charge breeding. Important information on the charge breeding can be obtained by conducting similar experiments using the gas mixing and 2-frequency heating techniques with a conventional JYFL 14 …
New fine structures resolved at the ELNES Ti-L2,3 edge spectra of anatase and rutile: comparison between experiment and calculation.
2010
Abstract Anatase and rutile Ti- L 2,3 edge spectra were measured in electron energy loss spectroscopy (EELS) using a transmission electron microscope (TEM) coupled to a CEOS Cs-probe corrector, an omega-type monochromator and an in-column omega-type energy filter fully corrected for 2nd order aberrations. Thanks to the high energy resolution, high electron probe current and high stability achieved under this instrumental configuration, new fine structures, never reported before, were resolved at the L 3 band of both rutile and anatase. The data suggest that new peaks also exist in the L 2 e g band. The experimental spectra are compared with multichannel multiple scattering (MMS) calculation…
Explosive crystallization in amorphous CuTi thin films: a molecular dynamics study
2019
Abstract Molecular dynamic simulation was used to study mechanism of self-propagating waves of explosive crystallization (devitrification) in the CuTi metallic glass. Processes in thin rectangular samples composed of one to two million atoms were simulated and compared with experimental data. It was shown that the nucleation of primary crystalline clusters occurs homogeneously due to spontaneous fluctuations of atomic structure; the clusters not
Structural characterization of TiO2/TiN O (δ-doping) heterostructures on (1 1 0)TiO2 substrates
2003
Abstract TiO2/TiNxOy δ-doping structures were grown on the top of (1 1 0)TiO2 rutile substrates by low pressure metal-organic vapor phase epitaxy (LP-MOVPE) technique at 750 °C. The samples were analyzed by high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and X-ray diffraction techniques (rocking curves and φ-scans). The presence of satellites in the (1 1 0)TiO2 rocking curve revealed the epitaxial growth of 10 period δ-doping structures. The thickness of the TiO2 layers, 84 nm, was deduced from the satellites period. HRTEM observations showed around 1.5 nm thick δ-doping layers, where the presence of nitrogen was detected by EELS. The analy…
Experimental and numerical investigation on a new FSW based metal to composite joining technique
2018
Abstract In the last decades, different techniques were proposed to join aluminum sheets with composites materials. Each of them has advantages and weak points over the others and new techniques and patents are continuously developed to overcome these difficulties. In this paper an experimental and numerical investigation on a new Friction Stir Welding based approach to mechanically join AA6082-T6 to self-reinforced polypropylene is presented. The aluminum sheet is pre-holed along both the sides of the weld line and a pinless tool generates the heat and pressure needed to prompt back-extrusion of the composite. New experimental fixtures and hole designs were investigated in order to enhance…
Mechanical properties of macroscopic magnetocrystals
2019
Abstract We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals , were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kin…
Synthesis of FeAl Hetero-Nanostructured Bulk Parts via Spark Plasma Sintering of Milled Powder
2006
AbstractSpark plasma sintering (SPS) has been used in order to introduce nanocrystalline grains within fully dense FeAl consolidated parts. Hetero-nanostructured parts, consisting of nano, ultrafine and micrometric grains, have been successfully processed when milled - Y2O3 reinforced - FeAl powder was used. The large temperature differences that are spontaneously generated during the SPS process as well as the use of milled powder account for the formation of such interesting structures. The grain size distribution - that is suggested to be very potent to improve both strength and ductility - could be significantly modified by a proper selection of sintering temperature and holding time.
Spin–orbit torque driven multi-level switching in He + irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy
2020
We have investigated the spin–orbit torque-driven magnetization switching in W/CoFeB/MgO Hall bars with perpendicular magnetic anisotropy. He+ ion irradiation through a mask has been used to reduce locally the effective perpendicular anisotropy at a Hall cross. Anomalous Hall effect measurements combined with Kerr microscopy indicate that the switching process is dominated by domain wall (DW) nucleation in the irradiated region followed by rapid domain propagation at a current density as low as 0.8 MA/cm2 with an assisting in-plane magnetic field. Thanks to the implemented strong pinning of the DW at the transition between the irradiated and the non-irradiated region, an intermediate Hall r…