Search results for "MIMICRY"

showing 10 items of 120 documents

2018

Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: …

0106 biological sciences0303 health scienceseducation.field_of_studybiologyPopulationFrequency-dependent selectionAposematismbiology.organism_classification010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyMüllerian mimicryGenetic architecture03 medical and health sciencesEvolutionary biologySexual selectionHeliconiusGeneral Agricultural and Biological ScienceseducationSelection (genetic algorithm)030304 developmental biologyBiological Reviews
researchProduct

Alternative prey can change model-mimic dynamics between parasitism and mutualism

2003

Classical (conventional) Mullerian mimicry theory predicts that two (or more) defended prey sharing the same signal always benefit each other despite the fact that one species can be more toxic than the other. The quasi-Batesian (unconventional) mimicry theory, instead, predicts that the less defended partner of the mimetic relationship may act as a parasite of the signal, causing a fitness loss to the model. Here we clarify the conditions for parasitic or mutualistic relationships between aposematic prey, and build a model to examine the hypothesis that the availability of alternative prey is crucial to Mullerian and quasi-Batesian mimicry. Our model is based on optimal behaviour of the pr…

0106 biological sciencesMutualism (biology)0303 health sciencesSexual mimicryEcologyAposematismBiology010603 evolutionary biology01 natural sciencesMüllerian mimicryPredation03 medical and health sciencesAggressive mimicryMimicryChemical mimicryEcology Evolution Behavior and Systematics030304 developmental biologyEcology Letters
researchProduct

2016

Several neotropical orchid genera have been proposed as being sexually deceptive; however, this has been carefully tested in only a few cases. The genus Telipogon has long been assumed to be pollinated by male tachinid flies during pseudocopulatory events but no detailed confirmatory reports are available. Here, we have used an array of methods to elucidate the pollination mechanism in Telipogon peruvianus. The species presents flowers that have a mean floral longevity of 33 days and that are self-compatible, although spontaneous self-pollination does not occur. The flowers attract males of four tachinid species but only the males of an undescribed Eudejeania (Eudejeania aff. browni; Tachin…

0106 biological sciencesOrchidaceaeMultidisciplinaryAnimal sexual behaviourbiologyPollinationfungifood and beveragesTachinidaebiology.organism_classification010603 evolutionary biology01 natural sciencesTelipogonPollinatorSelf-pollinationBotanyMimicry010606 plant biology & botanyPLOS ONE
researchProduct

Specific color sensitivities of prey and predator explain camouflage in different visual systems

2004

In situations of aggressive mimicry, predators adapt their color to that of the substrate on which they sit for hunting, a behavior that is presumed to hide them from prey as well as from their own predators. Females of few crab-spider species encounter such situations when lying on flowers to ambush pollinators. To evaluate the efficiency of spider camouflage on flowers, we measured by spectroradiometry adult female Thomisus onustus and marguerite daisies, Leucanthemum vulgare. We compared chromatic contrast (color used for short-range detection) of each pair of spider and flower to detection thresholds computed in the visual systems of both Hymenopteran prey and passerine bird predator. W…

0106 biological sciences[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]0303 health sciencesSpiderbiology[SDV.OT] Life Sciences [q-bio]/Other [q-bio.OT]Ecologybiology.organism_classification010603 evolutionary biology01 natural sciencesPasserinePredation03 medical and health sciencesCamouflagebiology.animalThomisus onustusCrypsisAggressive mimicryAnimal Science and Zoology[ SDV.OT ] Life Sciences [q-bio]/Other [q-bio.OT]bird; camouflage; crab-spider; Hymenoptera; spectrometryPredatorComputingMilieux_MISCELLANEOUSEcology Evolution Behavior and Systematics030304 developmental biologyBehavioral Ecology
researchProduct

Mixed company : a framework for understanding the composition and organization of mixed‐species animal groups

2020

Mixed‐species animal groups (MSGs) are widely acknowledged to increase predator avoidance and foraging efficiency, among other benefits, and thereby increase participants' fitness. Diversity in MSG composition ranges from two to 70 species of very similar or completely different phenotypes. Yet consistency in organization is also observable in that one or a few species usually have disproportionate importance for MSG formation and/or maintenance. We propose a two‐dimensional framework for understanding this diversity and consistency, concentrating on the types of interactions possible between two individuals, usually of different species. One axis represents the similarity of benefit types …

0106 biological sciencesevolution of socialityTime Factorsmutualismspecies networksForagingSpatial Behavior010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyBirdsMicroeconomicsinterspecific communicationEating03 medical and health sciencesMixed speciesddc:570Animalsco‐evolutionSocial informationKeystone species030304 developmental biologyMammalsMutualism (biology)0303 health sciencesBehavior AnimalFishesReptilesGroup compositionOriginal ArticlesBiodiversityFeeding BehaviorBiological EvolutionAnimal groupsPredatory BehaviorMimicrypublic informationOriginal ArticleBusinessGeneral Agricultural and Biological SciencesBehavior Observation Techniquesmimicrykeystone species
researchProduct

Social information use about novel aposematic prey is not influenced by a predator’s previous experience with toxins

2019

Aposematism is an effective antipredator strategy. However, the initial evolution and maintenance of aposematism are paradoxical because conspicuous prey are vulnerable to attack by naive predators. Consequently, the evolution of aposematic signal mimicry is also difficult to explain. The cost of conspicuousness can be reduced if predators learn about novel aposematic prey by observing another predator's response to that same prey. On the other hand, observing positive foraging events might also inform predators about the presence of undefended mimics, accelerating predation on both mimics and their defended models. It is currently unknown, however, how personal and social information combi…

0106 biological sciencespredator-prey interactionstoksiinitZoologyAVOIDANCEAposematismBiology41 Environmental SciencesSTRATEGIC DECISIONSALTERNATIVE PREYFREQUENCY010603 evolutionary biology01 natural sciencesBATESIAN MIMICRYBasic Behavioral and Social SciencePredation03 medical and health sciencesDEFENDED PREYpetoeläimetBehavioral and Social ScienceCOLOR BIASEStoxin loadaposematismAVERSIONSSocial informationPredatorEcology Evolution Behavior and SystematicsEDUCATED PREDATORS030304 developmental biologysuojaväri0303 health sciencessaaliseläimetmimikry3103 EcologySocial learningBLACKBIRDSBatesian mimicrysosiaalinen oppiminengreat titssocial learning3109 Zoology1181 Ecology evolutionary biologyMimicrymimicry31 Biological Sciences
researchProduct

Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth

2020

AbstractWarning signals are predicted to develop signal monomorphism via positive frequency-dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large-scale predation experiment in four locations, among which the frequencies of hindwing warning coloration of aposematic Arctia plantaginis differ. Here we show that selection by avian predators on warning colour is predicted by local morph frequency and predator community composition. We found +FDS to be strongest in monomorphic Scotland, and in contrast, lowest in polymorphic Finland, where different predators favour different male morphs. +FDS was also found in Geo…

0106 biological sciencespredatorspredator-prey interactionsFrequency-dependent selectionFREQUENCY-DEPENDENT SELECTIONDIVERSITYMoths01 natural sciencesMüllerian mimicrytäpläsiilikäsPredationmuuntelu (biologia)Arctia plantaginisPredatorFinland0303 health sciencesMonomorphismsaaliseläimetluonnonvalintaEcologywood tiger mothVARIABLE SELECTIONDIFFERENTIATIONPOISON FROG1181 Ecology evolutionary biologyMULLERIAN MIMICRYvaroitusväriColorZoologyAposematismBiology010603 evolutionary biologyBirds03 medical and health sciencesArctia plantaginisAposematismPARASEMIAcolour polymorphismpetoeläimetAnimalsaposematismfrequency‐dependent selectionEcology Evolution Behavior and SystematicsSelection (genetic algorithm)030304 developmental biologysignal variationsignal convergence010604 marine biology & hydrobiologypredator–prey interactionsEVOLUTIONSIGNALScotlandCommunity compositionPredatory Behavior
researchProduct

Why aren't warning signals everywhere? : On the prevalence of aposematism and mimicry in communities

2021

Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. He…

0106 biological sciencesvaroitusväri570predator-prey interactionsFREQUENCY-DEPENDENT SELECTIONFrequency-dependent selectionPopulationBatesian mimicryAposematismMacroevolutionModels Biological010603 evolutionary biology01 natural sciencesRISK-TAKINGGeneral Biochemistry Genetics and Molecular BiologyMüllerian mimicryPredationANTIPREDATOR DEFENSES03 medical and health sciencesPrevalenceAnimalsaposematismecological nicheeducationMullerian mimicryBODY-SIZE030304 developmental biology0303 health scienceseducation.field_of_studyMüllerian mimicryEcologyBiological Mimicrymimikrypredator–prey interactionseliöyhteisötBiological EvolutionBatesian mimicrysaalistusekologinen lokeroCORAL-SNAKE PATTERNCHEMICAL DEFENSEGeographyCOLOR PATTERNPredatory Behavior1181 Ecology evolutionary biologyMimicrySHIFTING BALANCEGeneral Agricultural and Biological Sciencescommunity ecology
researchProduct

Evaluating the potential for evolutionary mismatch in Batesian mimics: A case study in the endangered smooth snake (Coronella austriaca)

2018

Many harmless organisms gain a survival advantage by mimicking venomous species. This is the case of the endangered smooth snake (Coronella austriaca), which mimics venomous vipers. Although this may protect the smooth snake against most of its natural predators, it may render them at greater risk of mortality from humans, who are more inclined to kill species, such as vipers, that they consider dangerous. This may cause an evolutionary mismatch, whereby humans may counteract the natural advantage of mimicry. We explore this possibility of evaluating the willingness of humans to kill smooth snakes versus the adder (Vipera berus), as well as their ability to discern them in the Åland Islands…

0106 biological sciencesvaroitusväriVIPeRVipera berusconflictEndangered specieskyyZoologyAposematismmatelijat010603 evolutionary biology01 natural sciencescomplex mixturesPredationkäärmeetCoronella austriacakangaskäärmeGeneticsaposematismkäyttäytyminenEcology Evolution Behavior and Systematicsbiologylajiensuojelu010604 marine biology & hydrobiologymimikrybiology.organism_classificationBatesian mimicrysaalistusreptilesbehaviourPerspectiveMimicryta1181ihminen-eläinsuhdepredationGeneral Agricultural and Biological SciencesPerspectivesEvolutionary Applications
researchProduct

Immunohistochemistry of Human Hsp60 in Health and Disease: From Autoimmunity to Cancer

2017

Hsp60 (also called Cpn60) is a chaperonin with essential functions for cell physiology and survival. Additionally, its involvement in the pathogenesis of a variety of diseases (e.g., some autoimmune disorders and cancer) is becoming evident with new research. For example, the distribution and levels of Hsp60 in cells and tissues have been found altered in many pathologic conditions, and the significance of these alterations is being investigated in a number of laboratories. The aim of this ongoing research is to determine the meaning of these Hsp60 alterations with regard to pathogenetic mechanisms, diagnosis, classification of lesions, and assessing prognosis and response to treatment. Hsp…

0301 basic medicineCell physiologyHsp60 in cancerDiseasemedicine.disease_causeHsp60 immunostainingAutoimmunityPathogenesis03 medical and health sciences0302 clinical medicineHsp60 and autoimmunityGeneticsmedicineMolecular BiologyHsp60 immunohistochemistrybusiness.industryCancerHsp60Hsp60 antibodiemedicine.diseaseChaperonin Hsp60Molecular mimicry030104 developmental biology030220 oncology & carcinogenesisImmunologyHsp60 locationImmunohistochemistryHSP60Hsp60 in tissuebusinessMolecular mimicry
researchProduct