Search results for "MITOCHONDRIAL DNA"
showing 10 items of 259 documents
Higher physiopathogenicity byFasciola giganticathan by the genetically closeF. hepatica: experimental long-term follow-up of biochemical markers
2016
Background: Fascioliasis is caused by Fasciola hepatica and F. gigantica. The latter, always considered secondary in human infection, nowadays appears increasingly involved in Africa and Asia. Unfortunately, little is known about its pathogenicity, mainly due to difficulties in assessing the moment a patient first becomes infected and the differential diagnosis with F. hepatica. Methods: A long-term, 24-week, experimental study comparing F. hepatica and F. giganticawas made for the first time in the same animal model host, Guirra sheep. Serum biochemical parameters of liver damage, serum electrolytes, protein metabolism, plasma proteins, carbohydrate metabolism, hepatic lipid metabolism and…
Neolithic animal domestication as seen from ancient DNA
2018
Abstract In recent years, archaeological, archaeozoological and population genetic studies have increasingly converged on a southwest Asian origin for the four Neolithic farm animals: cattle, sheep, goats, and pigs. The power of ancient DNA studies lies in the possibility of tracking the genetic traces of major demographic processes, such as domestication itself and subsequent migration, at their spatiotemporal sources. In doing so, they are bypassing more recent events, which may have blurred ancient signals until the point of disappearance. Past ancient DNA studies have mostly relied on a single, powerful and – even for degraded ancient samples – easily accessible genetic marker: the mate…
Ethical Aspects of Nuclear and Mitochondrial DNA Transfer
2016
Somatic cell nuclear transfer (SCNT) (cloning), as a reproductive or therapeutic method, and mitochondrial DNA transfer, as a method to prevent the transmission of mitochondrial diseases, are analyzed in this paper from a bioethics perspective. The licit purpose of being able to treat certain diseases, as in the case of SCNT, cannot justify, in any case, resorting to illicit means such as the manipulation, selection, and elimination of human embryos in the blastocyst phase, by using cell lines obtained from them. Crossing this line paves the way (as utilitarian ethics advocates) to assuming any cost in scientific experimentation so long as satisfactory results are obtained. With mitochondr…
Phylogeny of Syndermata (syn. Rotifera): Mitochondrial gene order verifies epizoic Seisonidea as sister to endoparasitic Acanthocephala within monoph…
2015
Abstract A monophyletic origin of endoparasitic thorny-headed worms (Acanthocephala) and wheel-animals (Rotifera) is widely accepted. However, the phylogeny inside the clade, be it called Syndermata or Rotifera, has lacked validation by mitochondrial (mt) data. Herein, we present the first mt genome of the key taxon Seison and report conflicting results of phylogenetic analyses: while mt sequence-based topologies showed monophyletic Lemniscea (Bdelloidea + Acanthocephala), gene order analyses supported monophyly of Pararotatoria (Seisonidea + Acanthocephala) and Hemirotifera (Bdelloidea + Pararotatoria). Sequence-based analyses obviously suffered from substitution saturation, compositional …
Discovering new proteins in plant mitochondria by RNA editing simulation
2016
In plant mitochondria an essential mechanism for gene expression is RNA editing, often influencing the synthesis of functional proteins. RNA editing alters the linearity of genetic information transfer. Indeed it causes differences between RNAs and their coding DNA sequences that hinder both experimental and computational research of genes. Therefore common software tools for gene search, successfully applied to find canonical genes, often fail in discovering genes encrypted in the genome of plants. Here we propose a novel strategy useful to identify candidate coding sequences resulting from possible editing substitutions. In particular, we consider c!u substitutions leading to the creation…
Comparing three complete mitochondrial genomes of the moss genus Orthotrichum Hedw.
2016
Here, we present a comparative analysis of the mitochondrial genome of three representatives of Orthotrichum Hedw (Bryophyta): two populations of O. diaphanum and one of the related species, namely O. macrocephalum. Their mitochondrial genomes share the same gene content and gene order, and are furthermore structurally identical to those of other arthrodontous mosses. The mitogenome of the allopatric samples of O. diaphanum differ in 0.1% of their sequence, with protein coding genes holding five mutations, including two non-synonymous changes. The divergence between the mitogenomes of the two species, O. diaphanum and O. macrocephalum, is 0.4%. Within a broader sampling of the Orthotrichace…
DNA multigene characterization of Fasciola hepatica and Lymnaea neotropica and its fascioliasis transmission capacity in Uruguay, with historical cor…
2017
Background Fascioliasis is a pathogenic disease transmitted by lymnaeid snails and recently emerging in humans, in part due to effects of climate changes, anthropogenic environment modifications, import/export and movements of livestock. South America is the continent presenting more human fascioliasis hyperendemic areas and the highest prevalences and intensities known. These scenarios appear mainly linked to altitude areas in Andean countries, whereas lowland areas of non-Andean countries, such as Uruguay, only show sporadic human cases or outbreaks. A study including DNA marker sequencing of fasciolids and lymnaeids, an experimental study of the life cycle in Uruguay, and a review of hum…
Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent
2020
AbstractMitochondria are sensitive to oxidative stress, including that derived from ionizing radiation. To quantify the effects of exposure to environmental radionuclides on mitochondrial DNA (mtDNA) dynamics in wildlife, bank voles (Myodes glareolus) were collected from the chernobyl exclusion zone (CEZ), where animals are exposed to elevated levels of radionuclides, and from uncontaminated areas within the CEZ and elsewhere in Ukraine. Brains of bank voles from outside the CEZ were characterized by low mtDNA copy number and low mtDNA damage; by contrast, bank voles within the CEZ had high mtDNA copy number and high mtDNA damage, consistent with putative damaging effects of elevated radiat…
The Effect of a Novel c.820C>T (Arg274Trp) Mutation in the Mitofusin 2 Gene on Fibroblast Metabolism and Clinical Manifestation in a Patient
2017
Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2). Mitofusin 2 is a GTPase protein present in the outer mitochondrial membrane and responsible for regulation of mitochondrial network architecture via the fusion of mitochondria. As that fusion process is known to be strongly dependent on the GTPase activity of mitofusin 2, it is postulated that the MFN2 mutation within the GTPase domain may lead to impaired GTPase activity, and in turn to mitochondrial dysfunction. The work described here has therefore sought to verify the effects of MFN2 mutation within its GTPase domain on mitochondrial and e…
Mitochondrial genetic haplogroups and depressive symptoms: A large study among people in North America.
2017
Background:\ud A possible relationship between mitochondrial haplogroups and psychiatric diseases (e.g. schizophrenia and bipolar disorder) has been postulated, but data regarding depression is still limited. We investigated whether any mitochondrial haplogroup carried a significant higher risk of depressive symptoms in a large prospective cohort of North American people included in the Osteoarthritis Initiative.\ud \ud Methods:\ud Cross sectional data was derived from the Osteoarthritis Initiative. The haplogroup was assigned through a combination of sequencing and PCR-RFLP techniques. All the mitochondrial haplogroups were named following this nomenclature: H, U, K, J, T, V, SuperHV, I, W…