Search results for "MOLECULAR"

showing 10 items of 32340 documents

Effect of molecular Stokes shift on polariton dynamics

2021

When the enhanced electromagnetic field of a confined light mode interacts with photoactive molecules, the system can be driven into the regime of strong coupling, where new hybrid light-matter states, polaritons, are formed. Polaritons, manifested by the Rabi split in the dispersion, have shown potential for controlling the chemistry of the coupled molecules. Here, we show by angle-resolved steady-state experiments accompanied by multi-scale molecular dynamics simulations that the molecular Stokes shift plays a significant role in the relaxation of polaritons formed by organic molecules embedded in a polymer matrix within metallic Fabry-Pérot cavities. Our results suggest that in the case …

010304 chemical physicsScatteringRelaxation (NMR)Physics::OpticsGeneral Physics and Astronomy010402 general chemistry7. Clean energy01 natural sciencesMolecular physics0104 chemical sciencessymbols.namesakeMolecular dynamicsMolecular vibrationStokes shift0103 physical sciencesPolaritonsymbolsRadiative transferPhysical and Theoretical ChemistryExcitationThe Journal of Chemical Physics
researchProduct

Exotic SiO(2)H(2) Isomers: Theory and Experiment Working in Harmony.

2016

Replacing carbon with silicon can result in dramatic and unanticipated changes in isomeric stability, as the well-studied CO2H2 and the essentially unknown SiO2H2 systems illustrate. Guided by coupled-cluster calculations, three SiO2H2 isomers have been detected and spectroscopically characterized in a molecular beam discharge source using rotational spectroscopy. The cis,trans conformer of dihydroxysilylene HOSiOH, the ground-state isomer, and the high-energy, metastable dioxasilirane c-H2SiO2 are abundantly produced in a dilute SiH4/O2 electrical discharge, enabling precise structural determinations of both by a combination of isotopic measurements and calculated vibrational corrections. …

010304 chemical physicsSiliconChemistrychemistry.chemical_element010402 general chemistry01 natural sciencesDissociation (chemistry)0104 chemical sciencesComputational chemistryMetastability0103 physical sciencesRotational spectrumPhysical chemistryGeneral Materials ScienceElectric dischargeRotational spectroscopyPhysical and Theoretical ChemistryMolecular beamConformational isomerismThe journal of physical chemistry letters
researchProduct

Polarization-driven spin precession of mesospheric sodium atoms: publisher's note.

2018

This publisher's note corrects an error in the author listing of Opt. Lett.43, 5825 (2018)OPLEDP0146-959210.1364/OL.43.005825.

010309 opticsPhysicsOpticsbusiness.industryQuantum electrodynamics0103 physical sciences02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technologyPolarization (waves)business01 natural sciencesAtomic and Molecular Physics and OpticsOptics letters
researchProduct

Models for supercontinuum generation beyond the slowly-varying-envelope approximation

2014

International audience; We show numerically that both the modified Korteweg–de Vries and the sine-Gordon models are conducive to the generation of supercontinua with spectral bandwidths of several octaves, when an intense short pulse is launched as the initial condition. These models beyond the slowly-varying-envelope approximation could play an important role in modeling supercontinuum generation in gas-filled hollow waveguides.

010309 opticsPhysics[PHYS]Physics [physics]Frequency conversionSlowly varying envelope approximation0103 physical sciences010306 general physics01 natural sciencesAtomic and Molecular Physics and OpticsComputational physicsSupercontinuum
researchProduct

Effective characterization of the phase and intensity profiles of asymmetrically distorted light pulses in optical fiber systems

2009

International audience; We address the problem of characterization of light pulses that propagate in long-haul high-bit-rate optical communication systems under strongly perturbed conditions. We show that the conventional technique for characterization of the phase and intensity profile of such pulses becomes qualitatively inconsistent when the pulse's profile is asymmetrically distorted with respect to its center of mass. We resolve these inconsistencies by partially reformulating the conventional technique by means of appropriate pulse parameters, which we call upgraded parameters, that allow a fair characterization of the intensity and phase of all types of light pulses, including those …

010309 optics[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry020210 optoelectronics & photonics0103 physical sciences[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry0202 electrical engineering electronic engineering information engineeringStatistical and Nonlinear Physics02 engineering and technology190.5530 060.5530 060.2330 060.2360 060.451001 natural sciencesAtomic and Molecular Physics and Optics
researchProduct

Active components for integrated plasmonic circuits

2009

International audience; We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides.

010309 optics[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicComputer science[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0103 physical sciences[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicPhysics::Atomic and Molecular ClustersPhysics::Optics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics01 natural sciences
researchProduct

Phosphasalen group IV metal complexes: synthesis, characterization and ring opening polymerization of lactide.

2020

International audience; We report the synthesis of a series of Zr and Ti complexes bearing phosphasalen which differs from salen by the incorporation of two P atoms in the ligand backbone. The reaction of phosphasalen proligands (1a-1c)H2 with Zr(CH2Ph)4 led to different products depending on the nature of the N,N-linker in the ligand. In case of ethylene-linked phosphasalen, octahedral Zr complex 2a formed as a single stereoisomer in trans geometry. With the phenylene linker, it was shown by dynamic NMR spectroscopy that complex 2b exists as a mixture of trans and cis-β isomers in solution, both enantiomers (Δ and Λ) of the cis-β isomer being in fast equilibrium with respect to the NMR tim…

010402 general chemistryLIGANDS SYNTHESIS01 natural sciencesRing-opening polymerizationCoordination complexInorganic ChemistryINDIUM COMPLEXESOctahedral molecular geometry[CHIM]Chemical SciencesSALALEN COMPLEXESCYCLIC ESTERSCOORDINATION CHEMISTRYZIRCONIUM COMPLEXES; COORDINATION CHEMISTRY; SALALEN COMPLEXES; LIGANDS SYNTHESIS; INDIUM COMPLEXES; SALEN LIGANDS; CYCLIC ESTERS; INITIATORS; CATALYSIS; ALUMINUMchemistry.chemical_classification010405 organic chemistryLigandCATALYSISCationic polymerizationNuclear magnetic resonance spectroscopyALUMINUM0104 chemical sciencesCrystallographychemistrySALEN LIGANDSAlkoxy groupINITIATORS[CHIM.OTHE]Chemical Sciences/OtherIsomerizationZIRCONIUM COMPLEXESDalton transactions (Cambridge, England : 2003)
researchProduct

The first example of cofacial bis(dipyrrins)

2016

International audience; Two series of cofacial bis(dipyrrins) were prepared and their photophysical properties as well as their bimolecular fluorescence quenching with C-60 were investigated. DFT and TDDFT computations were also performed as a modeling tool to address the nature of the fluorescence state and the possible inter-chromophore interactions. Clearly, there is no evidence for such interactions and the bimolecular quenching of fluorescence, in comparison with mono-dipyrrins, indicates that C-60-bis(dipyrrin) contacts occur from the outside of the "mouth" of the cofacial structure.

010402 general chemistryPhotochemistry01 natural sciences[ CHIM ] Chemical SciencesCatalysisTransition metalexcitation-energiesmolecular-orbital methodsorganometallic compoundsMaterials Chemistry[CHIM]Chemical Sciencessinglet energy transfersdensity-functional theoryvalence basis-setsGroup 2 organometallic chemistryQuenching (fluorescence)010405 organic chemistryChemistryGeneral ChemistryTime-dependent density functional theorytransition-metalsFluorescence0104 chemical scienceslight-harvesting systems2nd-row elementsDensity functional theoryextended basis-sets
researchProduct

Heavy enzymes and the rational redesign of protein catalysts

2019

Abstract An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled “heavy” dihydrofolate reductases and their natural‐abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present…

010402 general chemistryProtein Engineering01 natural sciencesBiochemistryCatalysisEnzyme catalysisisotope effectsCatalytic DomainDihydrofolate reductaseMolecular BiologyAlcohol dehydrogenasechemistry.chemical_classificationalcohol dehydrogenasesCarbon Isotopesdihydrofolate reductasesbiologyBacteriaNitrogen Isotopes010405 organic chemistryConceptOrganic ChemistryAlcohol DehydrogenaseActive siteSubstrate (chemistry)Protein engineeringDeuteriumCombinatorial chemistrymolecular dynamics0104 chemical sciencesKineticsTetrahydrofolate Dehydrogenaseenzyme engineeringEnzymechemistrybiology.proteinBiocatalysisMolecular MedicineConcepts
researchProduct

Lanostanoids from Fungi as Potential Medicinal Agents

2015

010404 medicinal & biomolecular chemistry010405 organic chemistrybusiness.industryMedicinebusiness01 natural sciences0104 chemical sciences
researchProduct