Search results for "MOLYBDENUM"
showing 10 items of 461 documents
CCDC 1523699: Experimental Crystal Structure Determination
2017
Related Article: Md. Kamal Hossain, Jörg A. Schachner, Matti Haukka, Ari Lehtonen, Nadia C. Mösch-Zanetti, Ebbe Nordlander|2017|Polyhedron|134|275|doi:10.1016/j.poly.2017.04.036
CCDC 276481: Experimental Crystal Structure Determination
2006
Related Article: A.Lehtonen, M.Wasberg, R.Sillanpaa|2006|Polyhedron|25|767|doi:10.1016/j.poly.2005.07.037
CCDC 243377: Experimental Crystal Structure Determination
2005
Related Article: F.Stoffelbach, R.Poli, S.Maria, P.Richard|2007|J.Organomet.Chem.|692|3133|doi:10.1016/j.jorganchem.2006.11.031
CCDC 1538079: Experimental Crystal Structure Determination
2018
Related Article: Kristina Hanauer, Christoph Förster, and Katja Heinze|2018|Eur.J.Inorg.Chem.||3537|doi:10.1002/ejic.201800570
CCDC 903512: Experimental Crystal Structure Determination
2013
Related Article: Antti Riisio, Ari Lehtonen, Mikko M. Hanninen, Reijo Sillanpaa|2013|Eur.J.Inorg.Chem.||1499|doi:10.1002/ejic.201201234
CCDC 261263: Experimental Crystal Structure Determination
2006
Related Article: Zhenyu Shi, Jun Peng, C.J.Gomez-Garcia, S.Benmansour, Xiaojun Gu|2006|J.Solid State Chem.|179|253|doi:10.1016/j.jssc.2005.09.051
CCDC 848591: Experimental Crystal Structure Determination
2013
Related Article: R.V.Smaliy,M.Beauperin,A.Mielle,P.Richard,H.Cattey,A.N.Kostyuk,J.-C.Hierso|2012|Eur.J.Inorg.Chem.||1347|doi:10.1002/ejic.201101142
Reactive Sintering of molybdenum disilicide by Spark Plasma Sintering from mechanically activated powder mixtures: Processing parameters and properti…
2008
Abstract Dense molybdenum disilicide with a nano-organized microstructure was synthesized by mechanical activation, by producing nanostructured agglomerates of a 1:2 mixture of Mo and Si, followed by the synthesis/consolidation in one step using SPS technology. In order to synthesize a dense molybdenum disilicide with a perfectly controlled microstructure, an investigation of the influence of Spark Plasma Sintering processing parameters (temperature, heating rate, mechanical pressure and holding time) on the chemical composition and the microstructure characteristics has been performed. The present work shows also that the so-obtained materials present better oxidation resistance in compari…
Catalytic epoxidation using dioxidomolybdenum(VI) complexes with tridentate aminoalcohol phenol ligands
2019
Reaction of the tridentate aminoalcohol phenol ligands 2,4-di-tert-butyl-6-(((2 hydroxyethyl)(methyl)amino)methyl)phenol (H2L1) and 2,4-di-tert-butyl-6-(((1-hydroxybutan-2-yl)amino)methyl)phenol (H2L2) with [MoO2(acac)2] in methanol solutions resulted in the formation of [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(MeOH)] (3), respectively. In contrast, the analogous reactions in acetonitrile afforded the dinuclear complexes [Mo2O2(μ-O)2(L1)2] (2) and [Mo2O2(μ-O)2(L2)2] (4). The corresponding reactions with the potentially tetradentate ligand 3-((3,5-di-tert-butyl-2-hydroxybenzyl)(methyl)amino)propane-1,2-diol (H3L3) led to the formation of the mononuclear complex [MoO2(L3)(MeOH)] (5) in methanol whi…
Mild, Fast, and Easy To Conduct MoCl5-Mediated Dehydrogenative Coupling Reactions in Flow
2018
A convenient and straightforward approach to performing oxidative coupling reactions in flow is presented. A collection of electron-rich benzene derivatives was subjected to this protocol, and the distinct utility of molybdenum pentachloride (MoCl5) is established. Using this unexplored protocol, biphenyls could be obtained in 21–91% isolated yield. This simple protocol opens a new chapter in reagent-mediated dehydrogenative coupling reactions, and yields are compared to classical approaches.