Search results for "MOLYBDENUM"

showing 10 items of 461 documents

CCDC 1523699: Experimental Crystal Structure Determination

2017

Related Article: Md. Kamal Hossain, Jörg A. Schachner, Matti Haukka, Ari Lehtonen, Nadia C. Mösch-Zanetti, Ebbe Nordlander|2017|Polyhedron|134|275|doi:10.1016/j.poly.2017.04.036

(24-di-t-butyl-6-(((35-di-t-butyl-2-(hydroxy)benzyl)(2-(morpholin-4-yl)ethyl)amino)methyl)phenolato)-(dioxo)-molybdenum(vi) acetonitrile solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 276481: Experimental Crystal Structure Determination

2006

Related Article: A.Lehtonen, M.Wasberg, R.Sillanpaa|2006|Polyhedron|25|767|doi:10.1016/j.poly.2005.07.037

(N-(N'N'-dimethylamino)ethyl-NN-bis(2-oxy-35-dimethylbenzyl)amine)-dioxo-molybdenum(vi)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 243377: Experimental Crystal Structure Determination

2005

Related Article: F.Stoffelbach, R.Poli, S.Maria, P.Richard|2007|J.Organomet.Chem.|692|3133|doi:10.1016/j.jorganchem.2006.11.031

(eta^5^-Cyclopentadienyl)-di-iodo-(12-bis(di-isopropylimino)ethane-NN')-molybdenum(iii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1538079: Experimental Crystal Structure Determination

2018

Related Article: Kristina Hanauer, Christoph Förster, and Katja Heinze|2018|Eur.J.Inorg.Chem.||3537|doi:10.1002/ejic.201800570

(mu-oxo)-tetrakis(2-((ferrocenylimino)methyl)-1H-pyrrol-1-yl)-dioxo-di-molybdenum tetrahydrofuran solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 903512: Experimental Crystal Structure Determination

2013

Related Article: Antti Riisio, Ari Lehtonen, Mikko M. Hanninen, Reijo Sillanpaa|2013|Eur.J.Inorg.Chem.||1499|doi:10.1002/ejic.201201234

(mu2-2-(211-bis(2-oxy-35-dimethylbenzyl)-12-(2-oxy-35-dimethylphenyl)-58-dioxa-211-diazadodec-1-yl)-46-dimethylphenolato)-tetraoxo-di-molybdenum(vi) methanol solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 261263: Experimental Crystal Structure Determination

2006

Related Article: Zhenyu Shi, Jun Peng, C.J.Gomez-Garcia, S.Benmansour, Xiaojun Gu|2006|J.Solid State Chem.|179|253|doi:10.1016/j.jssc.2005.09.051

(mu~10~-Phosphato)-octakis(mu~3~-oxo)-octadecakis(mu~2~-oxo)-tetrakis(110-phenanthroline)-dodecaoxo-di-cobalt(ii)-tetra-molybdenum(v)-octa-molybdenum(vi)-di-vanadium(iv) (mu~10~-phosphato)-octakis(mu~3~-oxo)-octadecakis(mu~2~-oxo)-dihydroxy-tetrakis(110-phenanthroline)-dodecaoxo-di-cobalt(ii)-tetra-molybdenum(v)-octa-molybdenum(vi)-di-vanadium(iv) hydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 848591: Experimental Crystal Structure Determination

2013

Related Article: R.V.Smaliy,M.Beauperin,A.Mielle,P.Richard,H.Cattey,A.N.Kostyuk,J.-C.Hierso|2012|Eur.J.Inorg.Chem.||1347|doi:10.1002/ejic.201101142

(mu~2~-11'22'44'-hexakis(diphenylphosphino)ferrocene)-hexacarbonyl-di-molybdenum benzene toluene solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Reactive Sintering of molybdenum disilicide by Spark Plasma Sintering from mechanically activated powder mixtures: Processing parameters and properti…

2008

Abstract Dense molybdenum disilicide with a nano-organized microstructure was synthesized by mechanical activation, by producing nanostructured agglomerates of a 1:2 mixture of Mo and Si, followed by the synthesis/consolidation in one step using SPS technology. In order to synthesize a dense molybdenum disilicide with a perfectly controlled microstructure, an investigation of the influence of Spark Plasma Sintering processing parameters (temperature, heating rate, mechanical pressure and holding time) on the chemical composition and the microstructure characteristics has been performed. The present work shows also that the so-obtained materials present better oxidation resistance in compari…

010302 applied physicsMaterials scienceScanning electron microscopeMechanical EngineeringMetallurgyMetals and AlloysMolybdenum disilicideSpark plasma sinteringSintering02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructure01 natural scienceschemistry.chemical_compoundchemistryMechanics of MaterialsAgglomerate[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciencesOxidizing agentVickers hardness testMaterials Chemistry0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Catalytic epoxidation using dioxidomolybdenum(VI) complexes with tridentate aminoalcohol phenol ligands

2019

Reaction of the tridentate aminoalcohol phenol ligands 2,4-di-tert-butyl-6-(((2 hydroxyethyl)(methyl)amino)methyl)phenol (H2L1) and 2,4-di-tert-butyl-6-(((1-hydroxybutan-2-yl)amino)methyl)phenol (H2L2) with [MoO2(acac)2] in methanol solutions resulted in the formation of [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(MeOH)] (3), respectively. In contrast, the analogous reactions in acetonitrile afforded the dinuclear complexes [Mo2O2(μ-O)2(L1)2] (2) and [Mo2O2(μ-O)2(L2)2] (4). The corresponding reactions with the potentially tetradentate ligand 3-((3,5-di-tert-butyl-2-hydroxybenzyl)(methyl)amino)propane-1,2-diol (H3L3) led to the formation of the mononuclear complex [MoO2(L3)(MeOH)] (5) in methanol whi…

010402 general chemistry01 natural sciencesMedicinal chemistryCatalysisInorganic Chemistrychemistry.chemical_compoundkatalyytitepoxidationMaterials ChemistryPhenolMoietyPhysical and Theoretical ChemistryHydrogen peroxideAcetonitrileta116010405 organic chemistryLigandmolybdenum complexSubstrate (chemistry)kompleksiyhdisteettrinuclear structure0104 chemical scienceschemistrytridentate ligandMethanolmolybdeeniInorganica Chimica Acta
researchProduct

Mild, Fast, and Easy To Conduct MoCl5-Mediated Dehydrogenative Coupling Reactions in Flow

2018

A convenient and straightforward approach to performing oxidative coupling reactions in flow is presented. A collection of electron-rich benzene derivatives was subjected to this protocol, and the distinct utility of molybdenum pentachloride (MoCl5) is established. Using this unexplored protocol, biphenyls could be obtained in 21–91% isolated yield. This simple protocol opens a new chapter in reagent-mediated dehydrogenative coupling reactions, and yields are compared to classical approaches.

010405 organic chemistryChemistryOrganic ChemistryMolybdenum pentachloride010402 general chemistry01 natural sciencesBiochemistryCombinatorial chemistryCoupling reaction0104 chemical sciencesFlow (mathematics)Yield (chemistry)Benzene derivativesOxidative coupling of methanePhysical and Theoretical ChemistryOrganic Letters
researchProduct