Search results for "Mach"

showing 10 items of 3360 documents

Dynamical learning of a photonics quantum-state engineering process

2021

Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determine…

/dk/atira/pure/subjectarea/asjc/2200/2204/dk/atira/pure/subjectarea/asjc/2500/2504Biomedical EngineeringphotonicsFOS: Physical sciencesquantum mechanicSettore FIS/03 - Fisica Della MateriaQuantum walkquantum informationquantum state engineeringqunatum informationblack-box optimizationQuantum Physicsquantum information; orbital angular momentum; black-box optimization; quantum state engineering; photonics/dk/atira/pure/subjectarea/asjc/3100/3107Orbital angular momentumState engineeringGeneral MedicineAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAlgorithmmachine learningorbital angular momentumBlack-box optimizationQuantum Physics (quant-ph)Optics (physics.optics)Physics - OpticsAdvanced Photonics
researchProduct

Analytical description of solid particles kinematics due to a fluid flow and application to the depiction of characteristic kinematics in cold sprayi…

2017

Abstract In several multiphase flow applications such as fluidization, thermal spraying, atomization manufacturing and so on, the Newton's law is widely enacted to formulate the particle/fluid kinematic interaction and then to compute particles kinematics. This paper provides analytical solutions of the Newton's law in its time-dependent formulation or simplified formulation, the latter being a reduction of the time dependent problem into a spatial description of the particle motion. It was found that the velocity solution is strictly similar in both cases so that the simplified formulation is viable. The W_ 1 branch of the Lambert's function yields the analytical particle residence time an…

010302 applied physicsChemistryGeneral Chemical EngineeringMultiphase flow02 engineering and technologyMechanicsKinematics021001 nanoscience & nanotechnologyResidence time (fluid dynamics)01 natural sciencessymbols.namesakeMach number0103 physical sciencesFluid dynamicssymbolsParticleParticle velocity0210 nano-technologyMagnetosphere particle motionPowder Technology
researchProduct

Maximum Torque Per Ampere control algorithm for low saliency ratio interior permanent magnet synchronous motors

2017

This paper presents an investigation on the comparison between the Maximum Torque Per Ampere (MTPA) and the Field Orientation Control (FOC) algorithms for interior permanent magnet synchronous machines (IPMSMs). In particular, this study was carried out on a small-power IPMSM with low salience ratio. Both control algorithms have been implemented in the Matlab/Simulink environment, obtaining promising results.

010302 applied physicsControl algorithmMaximum torque per ampere control algorithmPermanent magnet synchronous motorComputer scienceRenewable Energy Sustainability and the Environment020208 electrical & electronic engineeringEnergy Engineering and Power Technology02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesField oriented control algorithmField orientationSalience (neuroscience)Control theoryMagnet0103 physical sciences0202 electrical engineering electronic engineering information engineeringInterior permanent magnet synchronous machineMATLABAmperecomputerMaximum torquecomputer.programming_language
researchProduct

Early detection and classification of bearing faults using support vector machine algorithm

2017

Bearings are one of the most critical elements in rotating machinery systems. Bearing faults are the main reason for failures in electrical motors and generators. Therefore, early bearing fault detection is very important to prevent critical system failures in the industry. In this paper, the support vector machine algorithm is used for early detection and classification of bearing faults. Both time and frequency domain features are used for training the support vector machine learning algorithm. The trained classier can be employed for real-time bearing fault detection and classification. By using the proposed method, the bearing faults can be detected at early stages, and the machine oper…

010302 applied physicsElectric motorEngineeringBearing (mechanical)business.industry020208 electrical & electronic engineeringFeature extractionPattern recognition02 engineering and technology01 natural sciencesFault detection and isolationlaw.inventionSupport vector machineStatistical classificationlawFrequency domain0103 physical sciences0202 electrical engineering electronic engineering information engineeringArtificial intelligencebusinessTest data2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)
researchProduct

The helicoidal magnetic generator

2016

Recently helicoidal generator for the exploitation of sea wave energy has been proposed. This device can convert both the vertical and rotational movement of seawaves. The electrical energy generated by such a device must be converted and conditioned in order to match the instantaneous utility requirements and a power link from the sea to an interconnection is needed. In this paper, the authors propose a mathematical model of this device and preliminarily present a prototype of the machine.

010302 applied physicsInterconnectionEngineeringbusiness.industryLinear asynchronous generatorElectric potential energy05 social sciencesElectrical engineeringOcean EngineeringPermanent magnet synchronous generatorElectric machineSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciInductorOceanography01 natural sciencesPower (physics)Generator (circuit theory)Electromagnetic coil0502 economics and business0103 physical sciencesbusinessInstrumentation050203 business & managementEnergy (signal processing)Sea waves energy
researchProduct

A Planar Generator for a Wave Energy Converter

2019

This article presents a permanent magnet planar translational generator which is able to exploit multiple modes of sea wave energy extraction. Linear electrical generators have recently been studied for the exploitation of sea wave energy, but, to the best of our knowledge, no synchronous planar translational generator has been proposed. In this article, to maximize the energy extraction, we have considered all the potential modes of motion due to wave excitation and included them within the mathematical model of the proposed system. The principle of operation of the generator can be summarized as follows: the moving part (translator) of the generator is driven from the sea waves and induce…

010302 applied physicsPhysicsElectric machines linear generators wave energy convertersSettore ING-IND/11 - Fisica Tecnica AmbientaleElectromotive forceEnergy converterAcousticsElectric generatorSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionPlanarlawElectromagnetic coilMagnet0103 physical sciencesElectrical and Electronic EngineeringExcitationArmature (electrical engineering)
researchProduct

Experimental comparison of two control algorithms for low-saliency ratio interior permanent magnet synchronous motors

2018

In this paper, an experimental investigation on the comparison between the Maximum Torque Per Ampere (MTPA) and the Field Orientation Control (FOC) algorithms for interior permanent magnet synchronous machines (IPMSMs) is described, analyzed and discussed. This investigation was carried out on a small-power IPMSM with low saliency ratio. More in detail, after a previous simulation study, the control techniques have been experimentally implemented and validated through means of a dSPACE® rapid prototyping system. The performances of the two algorithms have been evaluated and compared, obtaining interesting results.

010302 applied physicsRapid prototypingControl algorithmElectromagneticsPermanent magnet synchronous motorComputer scienceRenewable Energy Sustainability and the Environment020208 electrical & electronic engineeringlow saliency ratio motor02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesField oriented control algorithmmaximum torque per ampere control algorithmControl theoryMagnet0103 physical sciencesAutomotive Engineering0202 electrical engineering electronic engineering information engineeringTorqueInterior permanent magnet synchronous machineAmpereMaximum torque
researchProduct

Enhanced loss model algorithm for interior permanent magnet synchronous machines

2017

This paper presents an experimental study on the impact of the parameter variations over the performances of a LMA (Loss Model Algorithm) designed for an IPMSM (Interior Permanent Magnet Synchronous Machine). In a previous work, the characterization was carried out by assessing, for several working conditions, the motor parameters that influence the motor efficiency. The proposed enhanced loss model algorithm is implemented in a rapid prototyping system and its performances, in term of efficiency, are compared with other control systems, obtaining promising results.

010302 applied physicsRapid prototypingInterior permanent magnet synchronous motorComputer science020208 electrical & electronic engineeringWork (physics)02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesDC motorTerm (time)Settore ING-IND/31 - Elettrotecnicaspeed control drive systemsMagnetControl system0103 physical sciences0202 electrical engineering electronic engineering information engineeringTorquepower loss minimizationSettore ING-INF/07 - Misure Elettriche E ElettronicheAlgorithmPermanent magnet synchronous machine2017 AEIT International Annual Conference
researchProduct

Data-driven Fault Diagnosis of Induction Motors Using a Stacked Autoencoder Network

2019

Current signatures from an induction motor are normally used to detect anomalies in the condition of the motor based on signal processing techniques. However, false alarms might occur if using signal processing analysis alone since missing frequencies associated with faults in spectral analyses does not guarantee that a motor is fully healthy. To enhance fault diagnosis performance, this paper proposes a machinelearning based method using in-built motor currents to detect common faults in induction motors, namely inter-turn stator winding-, bearing- and broken rotor bar faults. This approach utilizes single-phase current data, being pre-processed using Welch’s method for spectral density es…

010302 applied physicsSignal processingbusiness.industryRotor (electric)Computer science020208 electrical & electronic engineeringSpectral density estimationPattern recognition02 engineering and technologyFault (power engineering)01 natural sciencesAutoencoderlaw.inventionSupport vector machineStatistical classificationlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringArtificial intelligencebusinessInduction motor2019 22nd International Conference on Electrical Machines and Systems (ICEMS)
researchProduct

Computer-aided analysis and design procedure for rotating induction machine magnetic circuits and windings

2018

The aim of this study is to present a new, accurate, and user-friendly software procedure for the analysis and rapid design of rotating induction machine windings, considering both the electric and the magnetic specifications of the machine itself. This procedure is a valid aid for quick first stage design without the necessity of using finite element method (FEM)-based design procedures. FEM can be used in a second design phase in order to refine the first stage results. The design procedure is hereafter outlined and some examples show its capability.

010302 applied physicsbusiness.industryComputer science020208 electrical & electronic engineeringAsynchronous machinesControl engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesFinite element methodMagnetic circuitDesign phaseInduction machineSoftwareElectromagnetic coil0103 physical sciences0202 electrical engineering electronic engineering information engineeringMachine windingMagnetic circuitsElectrical and Electronic EngineeringbusinessComputer aided analysis and designAsynchronous machineryComputer aided analysi
researchProduct