Search results for "Magnet"

showing 10 items of 15436 documents

Photoluminescence-Based Spatially Resolved Temperature Coefficient Maps of Silicon Wafers and Solar Cells

2020

In this article, we present a method to obtain implied open-circuit voltage images of silicon wafers and cells at different temperatures. The proposed method is then demonstrated by investigating the temperature coefficients of various regions across multicrystalline silicon wafers and cells from different heights of two bricks with different dislocation densities. Interestingly, both low and high temperature coefficients are found in dislocated regions on the wafers. A large spread of temperature coefficient is observed at regions with similar performance at 298 K. Reduced temperature sensitivity is found to be correlated with the increasing brick height and is exhibited by both wafers and…

010302 applied physicsBrickPhotoluminescenceMaterials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsReduced properties0103 physical sciencesOptoelectronicsDegradation (geology)WaferElectrical and Electronic EngineeringDislocation0210 nano-technologybusinessTemperature coefficientImage resolutionIEEE Journal of Photovoltaics
researchProduct

Insights into Intrinsic Defects and the Incorporation of Na and K in the Cu2ZnSnSe4 Thin-Film Solar Cell Material from Hybrid-Functional Calculations

2016

We have performed density functional theory calculations using the HSE06 hybrid functional to investigate the energetics, atomic, and electronic structure of intrinsic defects as well as Na and K impurities in the kesterite structure of the Cu2ZnSnSe4 (CZTSe) solar cell material. We found that both Na and K atoms prefer to be incorporated into this material as substitutional defects in the Cu sublattice. At this site highly stable (Na–Na), (K–K), and (Na–K) dumbbells can form. While Na interstitial defects are stable in CZTSe, the formation of K interstitial defects is unlikely. In general, the calculated formation energies for Na-related defects are always lower compared to their K-related…

010302 applied physicsChemical substanceChemistryNanotechnology02 engineering and technologyElectronic structureengineering.material021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionHybrid functionalGeneral EnergyImpuritylawChemical physics0103 physical sciencesSolar cellengineeringDensity functional theoryKesteritePhysical and Theoretical Chemistry0210 nano-technologyScience technology and societyThe Journal of Physical Chemistry C
researchProduct

Comparative Theoretical Analysis of BN Nanotubes Doped with Al, P, Ga, As, In, and Sb

2013

SUMMARY AND CONCLUDING REMARKS We have performed large-scale first-principles calculations ofthe electronic structure of (5,5) boron nitride nanotubescontaining the following substitutional impurity atoms: Al, P,Ga, As, In, and Sb. Calculations have been performed using thetwo methods: (i) linear combination of atomic orbitals(LCAO) with the atomic-centered Gaussian-type functions asa basis set and (ii) linearized augmented cylindrical wave(LACW) accompanied with the local density functional andmuffin-tin approximations for the electronic potential. In arelatively good qualitative agreement, both methods predict lowformation energies and, thus, relative stability of point defectsthat are assoc…

010302 applied physicsChemistryBand gap02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBond lengthchemistry.chemical_compoundGeneral EnergyBoron nitrideLinear combination of atomic orbitals0103 physical sciencesDensity of statesPhysical and Theoretical ChemistryAtomic physics0210 nano-technologyElectronic band structureBasis setThe Journal of Physical Chemistry C
researchProduct

Analytical description of solid particles kinematics due to a fluid flow and application to the depiction of characteristic kinematics in cold sprayi…

2017

Abstract In several multiphase flow applications such as fluidization, thermal spraying, atomization manufacturing and so on, the Newton's law is widely enacted to formulate the particle/fluid kinematic interaction and then to compute particles kinematics. This paper provides analytical solutions of the Newton's law in its time-dependent formulation or simplified formulation, the latter being a reduction of the time dependent problem into a spatial description of the particle motion. It was found that the velocity solution is strictly similar in both cases so that the simplified formulation is viable. The W_ 1 branch of the Lambert's function yields the analytical particle residence time an…

010302 applied physicsChemistryGeneral Chemical EngineeringMultiphase flow02 engineering and technologyMechanicsKinematics021001 nanoscience & nanotechnologyResidence time (fluid dynamics)01 natural sciencessymbols.namesakeMach number0103 physical sciencesFluid dynamicssymbolsParticleParticle velocity0210 nano-technologyMagnetosphere particle motionPowder Technology
researchProduct

Modeling Stator Winding Inter-Turn Short Circuit Faults in PMSMs including Cross Effects

2020

Author's accepted manuscript. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper presents a detailed analysis of stator winding inter-turn Short Circuit (ITSC) faults, taking the cross effects in the three phases of a permanent magnet synchronous motor (PMSM) into account by considering insulation degradation resistances. A PMSM with series coils in eac…

010302 applied physicsComputer sciencebusiness.industryStator020208 electrical & electronic engineering02 engineering and technologyStructural engineeringFault (power engineering)01 natural sciencesFinite element methodVDP::Teknologi: 500::Elektrotekniske fag: 540law.inventionInductancelawElectromagnetic coil0103 physical sciencesTurn (geometry)0202 electrical engineering electronic engineering information engineeringbusinessSynchronous motorShort circuit
researchProduct

Custom measurement system for memristor characterisation

2021

Abstract A cheap, compact and customisable characterisation system for memristor devices, working between ± 10 V, is presented. SPICE (Simulation Program with Integrated Circuit Emphasis) simulations are performed to verify the circuit feasibility and a proper software is developed to drive the system. The potentiality of the realised system is tested by performing several electrical measurements on both Cu/HfO2/Pt memristors and two-terminals commercial devices.

010302 applied physicsComputer sciencebusiness.industrySystem of measurementSpiceEmphasis (telecommunications)02 engineering and technologyMemristorIntegrated circuit021001 nanoscience & nanotechnologyCondensed Matter PhysicsSettore ING-INF/01 - Elettronica01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionSoftwarelaw0103 physical sciencesMaterials ChemistryElectronic engineeringElectrical measurementsElectrical and Electronic EngineeringMemristor ReRAM electrical characterization system current compliance endurance retention0210 nano-technologybusinessSolid-State Electronics
researchProduct

A General Mathematical Formulation for the Determination of Differential Leakage Factors in Electrical Machines with Symmetrical and Asymmetrical Ful…

2018

This paper presents a simple and general mathematical formulation for the determination of the differential leakage factor for both symmetrical and asymmetrical full and dead-coil windings of electrical machines. The method can be applied to all multiphase windings and considers Gorges polygons in conjunction with masses geometry in order to find an easy and affordable way to compute the differential leakage factor, avoiding the adoption of traditional methods that refer to the Ossanna's infinite series, which has to be obviously truncated under the bound of a predetermined accuracy. Moreover, the method described in this paper allows the easy determination of both the minimum and maximum v…

010302 applied physicsComputer scienceconcentrated winding020208 electrical & electronic engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciTopology01 natural sciencesdifferential leakage factorIndustrial and Manufacturing EngineeringHarmonic analysismoment of inertiaControl and Systems EngineeringElectromagnetic coil0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringAsymmetrical windingdead-coil windingGörges polygonmultiphase windingsLeakage (electronics)
researchProduct

Determination of differential leakage factors in electrical machines with non-symmetrical full and dead-coil windings

2017

In this paper Gorges polygons are used in conjunction with masses geometry to find an easy and affordable way to compute the differential leakage factor of non symmetrical full and dead coil winding. By following the traditional way, the use of the Ossanna's infinite series which has to be obviously truncated under the bound of a predetermined accuracy is mandatory. In the presented method no infinite series is instead required. An example is then shown and discussed to demonstrate practically the effectiveness of the proposed method.

010302 applied physicsConcentrated windingSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesDifferential leakage factorwindingsmoment of inertiaControl theoryElectromagnetic coil0103 physical sciencesunsymmetrical windingGörges polygonLeakage (electronics)Mathematics
researchProduct

Magnetic domain structure of La0.7Sr0.3MnO 3 thin-films probed at variable temperature with scanning electron microscopy with polarization analysis

2013

The domain configuration of 50 nm thick La0.7Sr0.3MnO3 films has been directly investigated using scanning electron microscopy with polarization analysis (SEMPA), with magnetic contrast obtained without the requirement for prior surface preparation. The large scale domain structure reflects a primarily four-fold anisotropy, with a small uniaxial component, consistent with magneto-optic Kerr effect measurements. We also determine the domain transition profile and find it to be in agreement with previous estimates of the domain wall width in this material. The temperature dependence of the image contrast is investigated and compared to superconducting-quantum interference device magnetometry …

010302 applied physicsCondensed Matter - Materials ScienceKerr effectMaterials sciencePhysics and Astronomy (miscellaneous)Spin polarizationMagnetic domainCondensed matter physics530 PhysicsScanning electron microscopeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology530 Physik021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesMagnetizationMagnetic anisotropy0103 physical sciences0210 nano-technologyAnisotropyApplied Physics Letters
researchProduct

Spin Hall magnetoresistance in antiferromagnetic insulators

2020

Antiferromagnetic materials promise improved performance for spintronic applications, as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators $\alpha$-Fe2O3 (hematite) and NiO in bilayer heterostructures with a Pt heavy metal top electrode. While rotating an ext…

010302 applied physicsCondensed Matter - Materials ScienceMagnetization dynamicsMaterials scienceMagnetoresistanceSpintronicsCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldMagnetizationFerromagnetismFerrimagnetism0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyJournal of Applied Physics
researchProduct