Search results for "Magnetical"

showing 10 items of 30 documents

Synthesis of ZnO–Ag2CO3–Fe3O4@rGO core–shell structure: magnetically separable photocatalyst for degradation of MB using the Box–Behnken design

2020

In this work, a simple microwave method was utilized to prepare ZnO sheet linked with Fe3O4@rGO core–shell and of Ag2CO3 through formation of the quadri-photocatalytic with high activity. The microstructure, morphology, spectroscopic, and magnetic characteristics of the prepared samples were assessed using XRD, SEM, PL, TEM, FT-IR, DLS, and VSM analysis. The photocatalytic activity of the material was evaluated for photodegradation of methylene blue dye under the UV and visible light with home-made photoreactor. The response surface method in a Box–Behnken design was utilized to design the experiments. The parameters affecting the efficiency of the degradation including, pH (5–9), photocata…

010302 applied physicsMaterials scienceCondensed Matter PhysicsMicrostructure01 natural sciencesBox–Behnken designAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCatalysischemistry.chemical_compoundchemistryChemical engineering0103 physical sciencesPhotocatalysisDegradation (geology)Fe3O4 magnetically separable photocatalyst photocatalysis photodegradationElectrical and Electronic EngineeringPhotodegradationMethylene blueVisible spectrumJournal of Materials Science: Materials in Electronics
researchProduct

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

2017

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

Astrophysical plasmasTokamakradio-frequency heatingCyclotronJoint European TorusPlasma heatingGeneral Physics and AstronomyFREQUENCY114 Physical sciences01 natural sciences7. Clean energyMagnetically confined plasmas010305 fluids & plasmaslaw.inventionIonPHYSICSPhysics and Astronomy (all)FUSIONMODE CONVERSIONlawPhysics::Plasma Physics0103 physical sciencesDielectric heating010306 general physicsPhysics[PHYS]Physics [physics]ta114Solar flare:Física [Àrees temàtiques de la UPC]Plasma dynamicsmulti-ion plasmasSettore FIS/01 - Fisica SperimentaleMagnetic confinement fusionPlasmaHE-3-RICH SOLAR-FLARESTècniques de plasmaJETCYCLOTRON RANGETOKAMAKPhysics::Space PhysicsAtomic physicsHE-3-RICH SOLAR-FLARES; MODE CONVERSION; CYCLOTRON RANGE; FUSION; JET; FREQUENCY; TOKAMAK; PHYSICS
researchProduct

Rydberg excitation of cold atoms inside a hollow core fiber

2017

We report on a versatile, highly controllable hybrid cold Rydberg atom fiber interface, based on laser cooled atoms transported into a hollow core Kagom\'{e} crystal fiber. Our experiments are the first to demonstrate the feasibility of exciting cold Rydberg atoms inside a hollow core fiber and we study the influence of the fiber on Rydberg electromagnetically induced transparency (EIT) signals. Using a temporally resolved detection method to distinguish between excitation and loss, we observe two different regimes of the Rydberg excitations: one EIT regime and one regime dominated by atom loss. These results are a substantial advancement towards future use of our system for quantum simulat…

Atomic Physics (physics.atom-ph)Electromagnetically induced transparencyFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural scienceslaw.inventionPhysics - Atomic Physicssymbols.namesakelaw0103 physical sciencesAtomRydberg matterFiberPhysics::Atomic Physics010306 general physicsPhysicsQuantum Physics021001 nanoscience & nanotechnologyLaserRydberg atomRydberg formulasymbolsAtomic physicsQuantum Physics (quant-ph)0210 nano-technologyExcitation
researchProduct

Floquet engineering of magnetism in topological insulator thin films

2023

Dynamic manipulation of magnetism in topological materials is demonstrated here via a Floquet engineering approach using circularly polarized light. Increasing the strength of the laser field, besides the expected topological phase transition, the magnetically doped topological insulator thin film also undergoes a magnetic phase transition from ferromagnetism to paramagnetism, whose critical behavior strongly depends on the quantum quenching. In sharp contrast to the equilibrium case, the non-equilibrium Curie temperatures vary for different time scale and experimental setup, not all relying on change of topology. Our discoveries deepen the understanding of the relationship between topology…

Condensed Matter - Materials ScienceFloquet theoryCondensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter PhysicsSettore FIS/03 - Fisica Della MateriaElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)ElectrochemistryMaterials ChemistryElectrical and Electronic Engineeringmagnetically doped topological insulator thin film
researchProduct

Nonlinear pulse deceleration using photorefractive four-wave mixing

2009

We investigate the possibilities of the backward four-wave coupling based on the nonlocal photorefractive response for the nonlinear deceleration of light pulses. The presence of an additional external variable parameter—the pump intensity ratio—allows to improve the output characteristics of the decelerated pulses compared to those typical of the two-wave coupling. In particular, large delay times of the output pulses can be achieved without their strong amplification. This positive distinctive feature of the pulse deceleration occurs far from threshold of the mirrorless optical oscillation.

CouplingPhysicsbusiness.industryElectromagnetically induced transparencyOscillationNonlinear opticsStatistical and Nonlinear PhysicsPhotorefractive effectPulse shapingAtomic and Molecular Physics and OpticsPulse (physics)Four-wave mixingOpticsbusinessJournal of the Optical Society of America B
researchProduct

Asymmetric transmission of transverse magnetic or radially polarized THZ waves through sub-wavelength gratings

2015

We have developed a metallic double circular grating with sub-wavelength slits which blocks radially polarized light incident from one of its sides and acts as a focusing diffractive element in the other direction. The proposed grating has been optimized for the sub-THz frequency range. Unidirectional transmission through the grating has been demonstrated experimentally at 0.1 THz. We have also developed a planar metallic double grating with sub-wavelength slits which blocks light with a transverse magnetic polarization incident from one of the grating sides and transmits radiation incident from the opposite direction into the +1 and −1 diffraction orders. These gratings which could be used…

DiffractionPhysicsbusiness.industryTerahertz radiationPhysics::OpticsElectromagnetically induced gratingGratingPolarization (waves)Diffraction efficiencylaw.inventionUltrasonic gratingOpticslawBlazed gratingOptoelectronicsbusiness2015 17th International Conference on Transparent Optical Networks (ICTON)
researchProduct

A weakly-interacting many-body system of Rydberg polaritons based on electromagnetically induced transparency

2020

We proposed utilizing a medium with a high optical depth (OD) and a Rydberg state of low principal quantum number, $n$, to create a weakly-interacting many-body system of Rydberg polaritons, based on the effect of electromagnetically induced transparency (EIT). We experimentally verified the mean field approach to weakly-interacting Rydberg polaritons, and observed the phase shift and attenuation induced by the dipole-dipole interaction (DDI). The DDI-induced phase shift or attenuation can be viewed as a consequence of the elastic or inelastic collisions among the Rydberg polaritons. Using a weakly-interacting system, we further observed that a larger DDI strength caused a width of the mome…

Electromagnetically induced transparencyAtomic Physics (physics.atom-ph)QC1-999Inelastic collisionGeneral Physics and AstronomyFOS: Physical sciencesPhysics::OpticsAstrophysicsPhysics - Atomic Physicssymbols.namesakePrincipal quantum numberBose-Einstein condensation ; room-temperature ; single photons ; thermalization ; optics ; gasPolaritonPhysics::Atomic PhysicsQuantum informationPhysicsCondensed Matter::Quantum GasesQuantum PhysicsCondensed Matter::OtherPhysicsQB460-466Rydberg atomRydberg formulasymbolsRydberg stateAtomic physicsQuantum Physics (quant-ph)
researchProduct

Diagnosis of mechanical unbalance for double cage induction motor load in time-varying conditions based on motor vibration signature analysis

2013

This paper investigates the detectability of mechanical unbalance in double cage induction motor load using motor vibration signature analysis technique. Rotor imbalances induce specific harmonic components in electrical, electromagnetical, and mechanical quantities. Harmonic components characteristic of this category of rotor faults, issued from vibration signals analysis, are closely related to rotating speed of the rotor, which complicates its detection under non-stationary operating conditions of the motor. Firstly, experimental results were performed first under healthy and mechanical load unbalance cases, for different load levels under steady-state operating conditions to evaluate th…

Engineeringcondition monitoringSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettricilaw.inventionelectromagnetical quantitieWaveletRotorlawInduction motorelectrical quantitieMechanical loadrotating speedRotor (electric)Condition monitoringharmonic componentTime-frequency analysicurrent signature analysiTransient analysiSteady-statewavelet transformsmotor radial vibration signature analysis techniquemechnical load unbalanceHarmonicwavelet analysimotor axial vibration signature analysis techniquemotor vibration signature analysiApproximation methodtime-varying conditionVibrationvibration measurementmechanical quantitienonstationary operating conditionControl theorymechanical unbalanceSensitivity (control systems)vibration signals analysirotor imbalancewavelet transformvibration signature analysiRenewable Energy Sustainability and the Environmentrotor faultbusiness.industryfault diagnosiFFT analysifast Fourier transformVibrationdouble cage induction motor loadignal processingbusinessInduction motor2013 International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

Strongly confined atomic localization by Rydberg coherent population trapping

2020

In this letter we investigate the possibility to attain strongly confined atomic localization using interacting Rydberg atoms in a Coherent Population Trapping (CPT) ladder configuration, where a standing-wave (SW) is used as a coupling field in the second leg of the ladder. Depending on the degree of compensation of the Rydberg level energy shift induced by the van der Waals (vdW) interaction, by the coupling field detuning, we distinguish between two antiblockade regimes, i.e. a partial antiblockade (PA) and a full antiblockade (FA). While a periodic pattern of tightly localized regions can be achieved for both regimes, the PA allows much faster converge of spatial confinement yielding a …

Field (physics)Atomic Physics (physics.atom-ph)Electromagnetically induced transparencyPopulationFOS: Physical sciences02 engineering and technologyTrapping01 natural sciencesSpectral linePhysics - Atomic Physics010309 opticssymbols.namesakeOptics0103 physical sciencesPhysics::Atomic PhysicseducationPhysicseducation.field_of_studyQuantum Physicsbusiness.industry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsQuantum Gases (cond-mat.quant-gas)Rydberg atomRydberg formulasymbolsvan der Waals forceAtomic physicsQuantum Physics (quant-ph)0210 nano-technologybusinessCondensed Matter - Quantum Gases
researchProduct

High-contrast dark resonances on the D1 line in cesium nanocell: the advantages compared with the other alkali D lines

2015

Electromagnetically induced transparency (EIT) effect in a -system formed by Cs atoms line, enclosed in nanometric-thin cells, is studied both experimentally and theoretically for the first time. T...

High contrastMaterials sciencebusiness.industryElectromagnetically induced transparencyPhysics::Opticschemistry.chemical_elementNanocellAlkali metalAtomic and Molecular Physics and OpticsMagnetic fieldCondensed Matter::Soft Condensed MatterOpticschemistryCaesiumPhysics::Atomic PhysicsAtomic physicsbusinessLine (formation)Journal of Modern Optics
researchProduct