Search results for "Main"

showing 10 items of 4384 documents

Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain.

2016

Abstract The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly ‘forebrain’, develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox ( rx ), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpress…

0301 basic medicineEmbryologyanimal structuresNerve Tissue ProteinsBiologyRetina03 medical and health sciencesNeuroblastNeural Stem CellsAnimalsDrosophila ProteinsMitosisMushroom BodiesCell ProliferationGanglion CystsHomeodomain ProteinsNeuronsCell growthfungiCell CycleBrainNuclear ProteinsAnatomyEmbryonic stem cellNeural stem cellCell biologyRepressor Proteins030104 developmental biologyDrosophila melanogasterLarvaMushroom bodiesForebrainHomeoboxDevelopmental BiologyTranscription FactorsMechanisms of development
researchProduct

Informational and linguistic analysis of large genomic sequence collections via efficient Hadoop cluster algorithms

2018

Abstract Motivation Information theoretic and compositional/linguistic analysis of genomes have a central role in bioinformatics, even more so since the associated methodologies are becoming very valuable also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection of k-mer statistics, i.e. how many times each k-mer in {A,C,G,T}k occurs in a DNA sequence. Although this problem is computationally very simple and efficiently solvable on a conventional computer, the sheer amount of data available now in applications demands to resort to parallel and distributed computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in…

0301 basic medicineEpigenomicsgenomic analysis; hadoop; distributed computingStatistics and ProbabilityComputer scienceBig dataSequence assemblyGenomeBiochemistryDomain (software engineering)Set (abstract data type)03 medical and health sciencesdistributed computingSoftwareComputational Theory and MathematicAnimalsCluster AnalysisHumansA-DNAk-mer counting distributed computing hadoop map reduceMolecular BiologyEpigenomicsBacteriabusiness.industryk-mer countingEukaryotaLinguisticsComputer Science Applications1707 Computer Vision and Pattern RecognitionGenomicsSequence Analysis DNAComputer Science ApplicationsComputational Mathematics030104 developmental biologymap reduceComputational Theory and MathematicsDistributed algorithmgenomic analysisKernel (statistics)MetagenomehadoopbusinessAlgorithmAlgorithmsSoftware
researchProduct

Maternal DNA lineages at the gate of Europe in the 10th century AD

2018

Given the paucity of archaeogenetic data available for medieval European populations in comparison to other historical periods, the genetic landscape of this age appears as a puzzle of dispersed, small, known pieces. In particular, Southeastern Europe has been scarcely investigated to date. In this paper, we report the study of mitochondrial DNA in 10th century AD human samples from Capidava necropolis, located in Dobruja (Southeastern Romania, Southeastern Europe). This geographical region is particularly interesting because of the extensive population flux following diverse migration routes, and the complex interactions between distinct population groups during the medieval period. We suc…

0301 basic medicineEuropean PeopleremainsHeredityPopulation geneticslcsh:Medicinepopulation030105 genetics & heredityBiochemistryHaplogroupGeographical Locationscontaminationmitochondrial-dnaEthnicitieslcsh:SciencePhylogenymtDNA control regionPrincipal Component Analysiseducation.field_of_studyMultidisciplinaryGeographyHigh-Throughput Nucleotide SequencingPaleogeneticscontrol regionMitochondrial DNAEuropeNucleic acidsGenetic MappingPhylogeographyGeographyArchaeologyBiogeographyRomanian PeopleGenetic structurehistoryResearch ArticleMitochondrial DNAancient DNA mitochondrial DNA population genetics Romania Capidava medieval necropolisForms of DNAPopulationNear-EasternDNA MitochondrialBone and BonesWhite Peoplediversity03 medical and health sciencesgenetic affinitiesGeneticsHumanseducationEvolutionary BiologyBiology and life sciencesPopulation BiologyRomaniaEcology and Environmental Scienceslcsh:RPaleontologySequence Analysis DNADNAsequenceHistory MedievalPhylogeographyGenetics Population030104 developmental biologyHaplotypesEvolutionary biologyPeople and PlacesEarth SciencesHaplogroupsPopulation Groupingslcsh:QPaleogeneticsPopulation Genetics
researchProduct

FASTdoop: A versatile and efficient library for the input of FASTA and FASTQ files for MapReduce Hadoop bioinformatics applications

2017

Abstract Summary MapReduce Hadoop bioinformatics applications require the availability of special-purpose routines to manage the input of sequence files. Unfortunately, the Hadoop framework does not provide any built-in support for the most popular sequence file formats like FASTA or BAM. Moreover, the development of these routines is not easy, both because of the diversity of these formats and the need for managing efficiently sequence datasets that may count up to billions of characters. We present FASTdoop, a generic Hadoop library for the management of FASTA and FASTQ files. We show that, with respect to analogous input management routines that have appeared in the Literature, it offers…

0301 basic medicineFASTQ formatStatistics and ProbabilityComputer scienceSequence analysismedia_common.quotation_subjectInformation Storage and RetrievalBioinformaticscomputer.software_genreGenomeBiochemistryDomain (software engineering)03 medical and health sciencesComputational Theory and MathematicHumansGenomic libraryQuality (business)DNA sequencingFASTQ; NGS; FASTQ; DNA sequencingMolecular Biologymedia_commonGene LibrarySequenceDatabaseSettore INF/01 - InformaticaGenome HumanComputer Science Applications1707 Computer Vision and Pattern RecognitionGenomicsSequence Analysis DNAFASTQFile formatComputer Science ApplicationsStatistics and Probability; Biochemistry; Molecular Biology; Computer Science Applications1707 Computer Vision and Pattern Recognition; Computational Theory and Mathematics; Computational MathematicsComputational Mathematics030104 developmental biologyComputational Theory and MathematicsNGSDatabase Management Systemscomputer
researchProduct

Skeletal Dysplasia Mutations Effect on Human Filamins’ Structure and Mechanosensing

2016

AbstractCells’ ability to sense mechanical cues in their environment is crucial for fundamental cellular processes, leading defects in mechanosensing to be linked to many diseases. The actin cross-linking protein Filamin has an important role in the conversion of mechanical forces into biochemical signals. Here, we reveal how mutations in Filamin genes known to cause Larsen syndrome and Frontometaphyseal dysplasia can affect the structure and therefore function of Filamin domains 16 and 17. Employing X-ray crystallography, the structure of these domains was first solved for the human Filamin B. The interaction seen between domains 16 and 17 is broken by shear force as revealed by steered mo…

0301 basic medicineFilaminsScienceProtein domainPeptide bindingPlasma protein bindingmacromolecular substancesBiologyMolecular Dynamics SimulationFilaminmedicine.disease_causeBioinformaticsCrystallography X-RayOsteochondrodysplasiasMechanotransduction CellularArticlecomputational biophysics03 medical and health sciences0302 clinical medicineProtein DomainsmedicineHumansLarsen syndromeForeheadMechanotransductionNMR-spektroskopiaActinMutationMultidisciplinaryBinding SitesQRSAXSmedicine.diseasecytoskeletal proteinsActinsCell biologybody regions030104 developmental biologyMutationMedicine030217 neurology & neurosurgeryröntgenkristallografiaProtein Binding
researchProduct

Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases

2017

AbstractParvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison w…

0301 basic medicineFine-tuningentsyymitStaphylococcus aureusparvulinsProtein ConformationParvulinenzymesTrypanosoma brucei bruceibinding cleftIsomeraseisomerasesArticleWW domain03 medical and health sciencesHumansAmino Acid SequenceMode of actionta116Multidisciplinary030102 biochemistry & molecular biologybiologyChemistryDynamics (mechanics)ta1182Peptidylprolyl IsomeraseArchaeaNIMA-Interacting Peptidylprolyl Isomerase030104 developmental biologyOrder (biology)PIN1Biophysicsbiology.proteinProtein BindingScientific Reports
researchProduct

Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins

2017

AbstractElongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes…

0301 basic medicineFluorescent Antibody Techniquelcsh:Medicinemacromolecular substancesBiologyArticleMiceEukaryotic cells03 medical and health sciencesEukaryotic translationCell MovementPeptide Initiation FactorsCitosqueletProtein biosynthesisAnimalsProtein Interaction Domains and Motifslcsh:ScienceCytoskeletonActinMultidisciplinaryCèl·lules eucariotesMicrofilament Proteinsfungilcsh:RGene Expression Regulation DevelopmentalRNA-Binding ProteinsTranslation (biology)Biological EvolutionActinsDorsal closureCell biologyElongation factor030104 developmental biologyProtein BiosynthesisForminsMutationbiology.proteinDrosophilalcsh:QEIF5AScientific Reports
researchProduct

Prooxidative chain transfer activity by thiol groups in biological systems

2020

Cysteine is arguably the best-studied biological amino acid, whose thiol group frequently participates in catalysis or ligand binding by proteins. Still, cysteine's unusual biological distribution has remained mysterious, being strikingly underrepresented in transmembrane domains and on accessible protein surfaces, particularly in aerobic life forms (“cysteine anomaly”). Noting that lipophilic thiols have been used for decades as radical chain transfer agents in polymer chemistry, we speculated that the rapid formation of thiyl radicals in hydrophobic phases might provide a rationale for the cysteine anomaly. Hence, we have investigated the effects of dodecylthiol and related compounds in i…

0301 basic medicineFree RadicalsDNA damageLipid peroxidationClinical BiochemistryProtein oxidationBiochemistryLipid peroxidation03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCysteine oxidationAnimalsHumansCysteineSulfhydryl CompoundsCaenorhabditis eleganslcsh:QH301-705.5chemistry.chemical_classificationlcsh:R5-920Organic ChemistryAmino acidTransmembrane domain030104 developmental biologylcsh:Biology (General)Structural biologychemistryBiochemistryThiyl radicalsThiolRadical propagationlcsh:Medicine (General)Protein oxidation030217 neurology & neurosurgeryResearch PaperCysteineRedox Biology
researchProduct

Identification of a classic nuclear localization signal at the N terminus that regulates the subcellular localization of Rbfox2 isoforms during diffe…

2016

Nuclear localization of the alternative splicing factor Rbfox2 is achieved by a C-terminal nuclear localization signal (NLS) which can be excluded from some Rbfox2 isoforms by alternative splicing. While this predicts nuclear and cytoplasmic localization, Rbfox2 is exclusively nuclear in some cell types. Here, we identify a second NLS in the N terminus of Rbfox2 isoform 1A that is not included in Rbfox2 isoform 1F. Rbfox2 1A isoforms lacking the C-terminal NLS are nuclear, whereas equivalent 1F isoforms are cytoplasmic. A shift in Rbfox2 expression toward cytoplasmic 1F isoforms occurs during epithelial to mesenchymal transition (EMT) and could be important in regulating the activity and fu…

0301 basic medicineGene isoformCytoplasmEpithelial-Mesenchymal TransitionNuclear Localization SignalsBiophysicsBiochemistryCell LineTransforming Growth Factor beta103 medical and health sciencesMiceMammary Glands AnimalProtein DomainsStructural BiologyCell Line TumorGeneticsNLSAnimalsProtein IsoformsAmino Acid SequenceMolecular BiologyCell NucleusChemistryAlternative splicingCell DifferentiationEpithelial CellsMouse Embryonic Stem CellsCell BiologySubcellular localizationMolecular biologyCell biologyAlternative Splicing030104 developmental biologyP19 cellCytoplasmRNA splicingRNA Splicing FactorsSequence AlignmentNuclear localization sequenceSignal TransductionFEBS letters
researchProduct

A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development.

2017

Summary Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apop…

0301 basic medicineGenome instabilityMaleliver; Hepatocellular carcinoma; DNA damage response; replication stress; apoptosisCancer ResearchDNA RepairCarcinogenesisFas-Associated Death Domain ProteinApoptosisurologic and male genital diseasesDNA damage responseDna Damage Response ; Apoptosis ; Hepatocellular Carcinoma ; Liver ; Replication StressHistonesMice0302 clinical medicineRisk FactorsFADDPhosphorylationCellular SenescenceCaspase 8biologyLiver Neoplasmshepatocellular carcinomaLiver regeneration3. Good healthHistoneOncologyReceptors Tumor Necrosis Factor Type I030220 oncology & carcinogenesisReceptor-Interacting Protein Serine-Threonine KinasesFemalebiological phenomena cell phenomena and immunityCell agingCarcinoma HepatocellularDNA damageDNA repairreplication stressCaspase 8liverArticleGenomic Instability03 medical and health sciencesAnimalsHepatectomyHumansCrosses GeneticCell ProliferationJNK Mitogen-Activated Protein KinasesCell BiologyLiver Regeneration030104 developmental biologyImmunologyChronic Diseasebiology.proteinCancer researchHepatocytesMyeloid Cell Leukemia Sequence 1 ProteinDNA Damage
researchProduct