Search results for "Manipulation"
showing 10 items of 311 documents
Virtual and arrow Temperley–Lieb algebras, Markov traces, and virtual link invariants
2021
Let [Formula: see text] be the algebra of Laurent polynomials in the variable [Formula: see text] and let [Formula: see text] be the algebra of Laurent polynomials in the variable [Formula: see text] and standard polynomials in the variables [Formula: see text] For [Formula: see text] we denote by [Formula: see text] the virtual braid group on [Formula: see text] strands. We define two towers of algebras [Formula: see text] and [Formula: see text] in terms of diagrams. For each [Formula: see text] we determine presentations for both, [Formula: see text] and [Formula: see text]. We determine sequences of homomorphisms [Formula: see text] and [Formula: see text], we determine Markov traces […
Special arrangements of lines: Codimension 2 ACM varieties in P 1 × P 1 × P 1
2019
In this paper, we investigate special arrangements of lines in multiprojective spaces. In particular, we characterize codimension 2 arithmetically Cohen–Macaulay (ACM) varieties in [Formula: see text], called varieties of lines. We also describe their ACM property from a combinatorial algebra point of view.
Hypergestures in Complex Time: Creative Performance Between Symbolic and Physical Reality
2015
Musical performance and composition imply hypergestural transformation from symbolic to physical reality and vice versa. But most scores require movements at infinite physical speed that can only be performed approximately by trained musicians. To formally solve this divide between symbolic notation and physical realization, we introduce complex time (\(\mathbb {C}\)-time) in music. In this way, infinite physical speed is “absorbed” by a finite imaginary speed. Gestures thus comprise thought (in imaginary time) and physical realization (in real time) as a world-sheet motion in space-time, corresponding to ideas from physical string theory. Transformation from imaginary to real time gives us…
Rationality and Sylow 2-subgroups
2010
AbstractLet G be a finite group. If G has a cyclic Sylow 2-subgroup, then G has the same number of irreducible rational-valued characters as of rational conjugacy classes. These numbers need not be the same even if G has Klein Sylow 2-subgroups and a normal 2-complement.
A simple proof for the formula to get symmetrized powers of group representations
1993
A general formula to decompose the p-power of irreducible representations of an arbitrary space group into sum of sets of irreducible representations of such a group, having identical permutational symmetry, is presented. Its proof is based upon a straightforward application of the properties of the generalized projection (shift) operators. © 1993 John Wiley & Sons, Inc.
An Algebraic Approach to Knowledge Representation
1999
This paper is an attempt to apply domain-theoretic ideas to a new area, viz. knowledge representation. We present an algebraic model of a belief system. The model consists of an information domain of special kind (belief algebra) and a binary relation on it (entailment). It is shown by examples that several natural belief algebras are, essentially, algebras of flat records. With an eye on this, we characterise those domains and belief algebras that are isomorphic to domains or algebras of records. For illustration, we suggest a system of axioms for revision in such a model and describe an explicit construction of what could be called a maxichoise revision.
Unbounded C$^*$-seminorms and $*$-Representations of Partial *-Algebras
2009
The main purpose of this paper is to construct *-representations from unbounded C*-seminorms on partial *-algebras and to investigate their *-representations. © Heldermann Verlag.
On defects of characters and decomposition numbers
2017
We propose upper bounds for the number of modular constituents of the restriction modulo [math] of a complex irreducible character of a finite group, and for its decomposition numbers, in certain cases.
Skeleta of affine hypersurfaces
2014
A smooth affine hypersurface Z of complex dimension n is homotopy equivalent to an n-dimensional cell complex. Given a defining polynomial f for Z as well as a regular triangulation of its Newton polytope, we provide a purely combinatorial construction of a compact topological space S as a union of components of real dimension n, and prove that S embeds into Z as a deformation retract. In particular, Z is homotopy equivalent to S.
Truncated modules and linear presentations of vector bundles
2018
We give a new method to construct linear spaces of matrices of constant rank, based on truncated graded cohomology modules of certain vector bundles as well as on the existence of graded Artinian modules with pure resolutions. Our method allows one to produce several new examples, and provides an alternative point of view on the existing ones.