Search results for "Markov"

showing 10 items of 628 documents

Quantized State-Feedback Stabilization for Delayed Markovian Jump Linear Systems with Generally Incomplete Transition Rates

2014

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/961925 open Access This paper is concerned with the robust quantized state-feedback controller design problem for a class of continuous-time Markovian jump linear uncertain systems with general uncertain transition rates and input quantization. The uncertainties under consideration emerge in both system parameters and mode transition rates. This new uncertain model is more general than the existing ones and can be applicable to more practical situations because each transition rate can be completely unknown or only its estimate value is known. B…

Controller designArticle SubjectApplied Mathematicslcsh:MathematicsUncertain systemsAnalysis; Applied MathematicsLinear matrixTransition rate matrixlcsh:QA1-939VDP::Mathematics and natural science: 400::Mathematics: 410::Analysis: 411Markovian jump linear systemsQuantization (physics)Markovian jumpControl theorySystem parametersAnalysisMathematics
researchProduct

Causal Inference and Statistical Fallacies

2001

Fallacies are defined as plausible-seeming arguments that give the wrong conclusion. The article concentrates on those with some connection with causality. The classical definition of causality involving a necessary and sufficient condition for an effect is rejected and three possible definitions discussed. The first is that of a statistical association that cannot be explained away as the effect of admissible alternative features. To make this more precise, Markov graphical representations are introduced and the important distinction between pairs of variables on an equal footing and those in a potential explanatory-response relation described. The roles of unobserved confounders and of ra…

Counterfactual thinkingMarkov chainArgumentCausal inferenceReading (process)media_common.quotation_subjectRelation (history of concept)Mathematical economicsCausalitySocial psychologyMisuse of statisticsMathematicsmedia_common
researchProduct

Effective hamiltonian approach to the non-Markovian dynamics in a spin-bath

2010

We investigate the dynamics of a central spin that is coupled to a bath of spins through a non-uniform distribution of coupling constants. Simple analytical arguments based on master equation techniques as well as numerical simulations of the full von Neumann equation of the total system show that the short-time damping and decoherence behaviour of the central spin can be modelled accurately through an effective Hamiltonian involving a single effective coupling constant. The reduced short-time dynamics of the central spin is thus reproduced by an analytically solvable effective Hamiltonian model.

Coupling constantPhysicsQuantum decoherenceSpinsHamiltonian modelMarkov processCondensed Matter PhysicsAtomic and Molecular Physics and Opticssymbols.namesakeClassical mechanicsQuantum mechanicsMaster equationsymbolsHamiltonian (quantum mechanics)opens systems effective hamiltonians quantum noise non-markovian dynamicsMathematical PhysicsVon Neumann architecture
researchProduct

Non-Markovian master equation for the XX central spin model

2008

The non-Markovian correlated projection operator technique is applied to the model of a central spin coupled to a spin bath through non uniform XX Heisenberg coupling. The second order results of the Nakajima-Zwanzig and of the time-convolutionless methods are compared with the exact solution considering a fully polarized initial bath state.

CouplingPhysicsCentral spin modelHeisenberg modelProbability density functionState (functional analysis)Settore FIS/03 - Fisica Della MateriaExact solutions in general relativityQuantum mechanicsMaster equationSpin modelNon-Markovian dynamicsCondensed Matter::Strongly Correlated ElectronsMaster equationSpin-½2008 2nd ICTON Mediterranean Winter
researchProduct

Quantum Non-Markovian Collision Models from Colored-Noise Baths

2019

A quantum collision model (CM), also known as repeated interactions model, can be built from the standard microscopic framework where a system S is coupled to a white-noise bosonic bath under the rotating wave approximation, which typically results in Markovian dynamics. Here, we discuss how to generalize the CM construction to the case of frequency-dependent system–bath coupling, which defines a class of colored-noise baths. This leads to an intrinsically non-Markovian CM, where each ancilla (bath subunit) collides repeatedly with S at different steps. We discuss the illustrative example of an atom in front of a mirror in the regime of non-negligible retardation times.

CouplingPhysicssymbols.namesakeClassical mechanicsColors of noiseAtomsymbolsRotating wave approximationMarkov processCollision modelCollisionQuantum
researchProduct

Geometric phase induced by a cyclically evolving squeezed vacuum reservoir

2006

We propose a new way to generate an observable geometric phase by means of a completely incoherent phenomenon. We show how to imprint a geometric phase to a system by "adiabatically" manipulating the environment with which it interacts. As a specific scheme we analyse a multilevel atom interacting with a broad-band squeezed vacuum bosonic bath. As the squeezing parameters are smoothly changed in time along a closed loop, the ground state of the system acquires a geometric phase. We propose also a scheme to measure such geometric phase by means of a suitable polarization detection.

DECOHERENCEPhysicsQuantum PhysicsBerry phaseGeneral Physics and AstronomyFOS: Physical sciencesObservableMarkovian processPolarization (waves)Measure (mathematics)QUANTUM COMPUTATIONLIGHTClassical mechanicsGeometric phaseQuantum mechanicsAtom (measure theory)Quantum informationQuantum statistical mechanicsGround stateQuantum Physics (quant-ph)
researchProduct

Observable geometric phase induced by a cyclically evolving dissipative process

2006

In a prevous paper (Phys. Rev. Lett. 96, 150403 (2006)) we have proposed a new way to generate an observable geometric phase on a quantum system by means of a completely incoherent phenomenon. The basic idea was to force the ground state of the system to evolve ciclically by "adiabatically" manipulating the environment with which it interacts. The specific scheme we have previously analyzed, consisting of a multilevel atom interacting with a broad-band squeezed vacuum bosonic bath whose squeezing parameters are smoothly changed in time along a closed loop, is here solved in a more direct way. This new solution emphasizes how the geometric phase on the ground state of the system is indeed du…

DECOHERENCEPhysicsQuantum PhysicsBerry phaseProcess (computing)Atom (order theory)FOS: Physical sciencesObservableSQUEEZED-LIGHTMarkovian processCondensed Matter PhysicsIndustrial and Manufacturing EngineeringAtomic and Molecular Physics and OpticsQUANTUM COMPUTATIONClassical mechanicsGeometric phaseQuantum systemDissipative systemGround stateQuantum Physics (quant-ph)InstrumentationClosed loop
researchProduct

Probabilistic techniques for bridging the semantic gap in schema alignment

Connecting pieces of informations from heterogeneous sources sharing the same domain is an open challenge in Semantic Web, Big Data and business communities. The main problem in this research area is to bridge the expressiveness gap between relational databases and ontologies. In general, an ontology is more expressive and captures more semantic information behind data than a relational database does. On the other side, databases are the most common used persistent storage system and they grant benefits such as security and data integrity but they need to be managed by expert users. The problem is quite significant above all when enterprise or corporate ontologies are used to share infomation…

Data IntegrationOWL OntologyDatabaseSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSchema MatchingEntity-Relation DiagramHidden Markov Model
researchProduct

Assembly support systems with Markov predictors

2020

In this paper, we analyse Markov prediction as a suitable model to suggest the next assembly step in the manufacturing process. The goal is a decision support system which can assist the workers in...

Decision support systemMarkov chainOperations researchComputer scienceManufacturing process05 social sciencesComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technologyLibrary and Information SciencesManagement Information Systems020204 information systems0502 economics and business0202 electrical engineering electronic engineering information engineering050211 marketingSupport systemJournal of Decision Systems
researchProduct

Witnessing non-Markovian effects of quantum processes through Hilbert-Schmidt speed

2020

Non-Markovian effects can speed up the dynamics of quantum systems while the limits of the evolution time can be derived by quantifiers of quantum statistical speed. We introduce a witness for characterizing the non-Markovianity of quantum evolutions through the Hilbert-Schmidt speed (HSS), which is a special type of quantum statistical speed. This witness has the advantage of not requiring diagonalization of evolved density matrix. Its sensitivity is investigated by considering several paradigmatic instances of open quantum systems, such as one qubit subject to phase-covariant noise and Pauli channel, two independent qubits locally interacting with leaky cavities, V-type and $\Lambda $-typ…

Density matrixPhysicsQuantum PhysicsHIlbert-Schmidt speedFOS: Physical sciencesType (model theory)non-Markovianity01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakePauli exclusion principleOpen quantum systemQubitQuantum mechanics0103 physical sciencessymbolsDissipative systemQuditQubitSensitivity (control systems)Quantum Physics (quant-ph)010306 general physicsQuantumPhysical Review A
researchProduct