Search results for "Markov"

showing 10 items of 628 documents

Revealing community structures by ensemble clustering using group diffusion

2018

We propose an ensemble clustering approach using group diffusion to reveal community structures in data. We represent data points as a directed graph and assume each data point belong to single cluster membership instead of multiple memberships. The method is based on the concept of ensemble group diffusion with a parameter to represent diffusion depth in clustering. The ability to modulate the diffusion-depth parameter by varying it within a certain interval allows for more accurate construction of clusters. Depending on the value of the diffusion-depth parameter, the presented approach can determine very well both local clusters and global structure of data. At the same time, the ability …

0301 basic medicineComputer scienceProperty (programming)Markov chain02 engineering and technologyInterval (mathematics)03 medical and health sciencesdiffuusio (fysikaaliset ilmiöt)0202 electrical engineering electronic engineering information engineeringCluster (physics)SegmentationDiffusion (business)Cluster analysista113ta213diffusionDirected graph030104 developmental biologyData pointHardware and ArchitectureSignal Processingyhdyskuntarakenne020201 artificial intelligence & image processingsocial networkcommunity structureAlgorithmSoftwareInformation Systemsclustering
researchProduct

Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

2017

We present a dynamic coarse-graining technique that allows to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSM), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling we additionally perform steered molecular dynamics simulations and find excellen…

0301 basic medicineDiscretizationGeneral Physics and AstronomyMarkov processFOS: Physical sciencesCondensed Matter - Soft Condensed Matter01 natural sciences03 medical and health sciencesMolecular dynamicssymbols.namesake0103 physical sciencesPhysics - Biological PhysicsStatistical physicsPhysical and Theoretical Chemistry010306 general physicsPhysicsQuantitative Biology::BiomoleculesMarkov chainMolecular biophysicsBiomolecules (q-bio.BM)Function (mathematics)030104 developmental biologyQuantitative Biology - BiomoleculesOrders of magnitude (time)Biological Physics (physics.bio-ph)FOS: Biological sciencessymbolsSoft Condensed Matter (cond-mat.soft)Granularity
researchProduct

Two-Stage Bayesian Approach for GWAS With Known Genealogy

2019

Genome-wide association studies (GWAS) aim to assess relationships between single nucleotide polymorphisms (SNPs) and diseases. They are one of the most popular problems in genetics, and have some peculiarities given the large number of SNPs compared to the number of subjects in the study. Individuals might not be independent, especially in animal breeding studies or genetic diseases in isolated populations with highly inbred individuals. We propose a family-based GWAS model in a two-stage approach comprising a dimension reduction and a subsequent model selection. The first stage, in which the genetic relatedness between the subjects is taken into account, selects the promising SNPs. The se…

0301 basic medicineStatistics and ProbabilityBayesian probabilityPopulationSingle-nucleotide polymorphismGenome-wide association studyComputational biologyEstadísticaBiologyKinship coefficientModel selection01 natural sciencesBeta-thalassemia010104 statistics & probability03 medical and health sciencesBeta-thalassemia disorderModelsRobust prior distributionRegularizationDiscrete Mathematics and Combinatorics0101 mathematicsStage (cooking)Genetic associationGenome-wide associationModel selectionVariable-selectionProbability and statisticsBayes factorRegressionBayes factor030104 developmental biologyPhenotypeStatistics Probability and UncertaintyGaussian Markov random field
researchProduct

Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks.

2016

Abstract Factorial Gaussian graphical Models (fGGMs) have recently been proposed for inferring dynamic gene regulatory networks from genomic high-throughput data. In the search for true regulatory relationships amongst the vast space of possible networks, these models allow the imposition of certain restrictions on the dynamic nature of these relationships, such as Markov dependencies of low order – some entries of the precision matrix are a priori zeros – or equal dependency strengths across time lags – some entries of the precision matrix are assumed to be equal. The precision matrix is then estimated by l 1-penalized maximum likelihood, imposing a further constraint on the absolute value…

0301 basic medicineStatistics and ProbabilityFactorialDependency (UML)Computer scienceGaussianNormal Distributionpenalized inferencesparse networkscomputer.software_genreMachine learning01 natural sciencesNormal distribution010104 statistics & probability03 medical and health sciencessymbols.namesakeSparse networksGeneticsComputer SimulationGene Regulatory NetworksGraphical model0101 mathematicsgene-regulatory systemMolecular BiologyProbabilityMarkov chainModels GeneticPenalized inferencebusiness.industryModel selectiongraphical modelGene-regulatory systemsComputational Mathematics030104 developmental biologysymbolsA priori and a posterioriData miningArtificial intelligenceGraphical modelsSettore SECS-S/01 - StatisticabusinesscomputerNeisseriaAlgorithmsStatistical applications in genetics and molecular biology
researchProduct

MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems

2016

This is a pre-copyedited, author-produced version of an article accepted for publication in Bioinformatics following peer review. The version of recordJorge González-Domínguez, Yongchao Liu, Juan Touriño, Bertil Schmidt; MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems, Bioinformatics, Volume 32, Issue 24, 15 December 2016, Pages 3826–3828, https://doi.org/10.1093/bioinformatics/btw558is available online at: https://doi.org/10.1093/bioinformatics/btw558 [Abstracts] MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-sca…

0301 basic medicineStatistics and ProbabilitySource codeComputer sciencemedia_common.quotation_subject02 engineering and technologyParallel computingcomputer.software_genreBiochemistryExecution time03 medical and health sciences0202 electrical engineering electronic engineering information engineeringCluster (physics)Point (geometry)Amino Acid SequenceMolecular Biologymedia_commonSequenceMultiple sequence alignmentProtein multiple sequenceComputational BiologyProteinsMarkov ChainsComputer Science ApplicationsComputational Mathematics030104 developmental biologyComputational Theory and MathematicsDistributed memory systemsMSAProbs020201 artificial intelligence & image processingMPIData miningSequence AlignmentcomputerAlgorithmsSoftware
researchProduct

On the stability of some controlled Markov chains and its applications to stochastic approximation with Markovian dynamic

2015

We develop a practical approach to establish the stability, that is, the recurrence in a given set, of a large class of controlled Markov chains. These processes arise in various areas of applied science and encompass important numerical methods. We show in particular how individual Lyapunov functions and associated drift conditions for the parametrized family of Markov transition probabilities and the parameter update can be combined to form Lyapunov functions for the joint process, leading to the proof of the desired stability property. Of particular interest is the fact that the approach applies even in situations where the two components of the process present a time-scale separation, w…

65C05FOS: Computer and information sciencesStatistics and ProbabilityLyapunov functionStability (learning theory)Markov processContext (language use)Mathematics - Statistics Theorycontrolled Markov chainsStatistics Theory (math.ST)Stochastic approximation01 natural sciencesMethodology (stat.ME)010104 statistics & probabilitysymbols.namesake60J05stochastic approximationFOS: MathematicsComputational statisticsApplied mathematics60J220101 mathematicsStatistics - MethodologyMathematicsSequenceMarkov chain010102 general mathematicsStability Markov chainssymbolsStatistics Probability and Uncertaintyadaptive Markov chain Monte Carlo
researchProduct

Coupled conditional backward sampling particle filter

2020

The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time series. Previous theoretical results have not been able to demonstrate the improvement brought by backward sampling, whereas we provide rates showing that CBPF can remain effective with a fixed number of particles independent of the time horizon. Our result is based on analysis of a new coupling of two CBPFs, the coupled conditional backward sampling particle filter (CCBPF). We show that CCBPF has good stability properties in the sense that with fixed number of particles, …

65C05FOS: Computer and information sciencesStatistics and ProbabilityunbiasedMarkovin ketjutTime horizonStatistics - Computation01 natural sciencesStability (probability)backward sampling65C05 (Primary) 60J05 65C35 65C40 (secondary)010104 statistics & probabilityconvergence rateFOS: MathematicsApplied mathematics0101 mathematicscouplingHidden Markov model65C35Computation (stat.CO)Mathematicsstokastiset prosessitBackward samplingSeries (mathematics)Probability (math.PR)Sampling (statistics)conditional particle filterMonte Carlo -menetelmätRate of convergence65C6065C40numeerinen analyysiStatistics Probability and UncertaintyParticle filterMathematics - ProbabilitySmoothing
researchProduct

Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer

2019

AbstractA spatial Markov-chain model is formulated for the progression of skin cancer. The model is based on the division of the computational domain into nodal points, that can be in a binary state: either in ‘cancer state’ or in ‘non-cancer state’. The model assigns probabilities for the non-reversible transition from ‘non-cancer’ state to the ‘cancer state’ that depend on the states of the neighbouring nodes. The likelihood of transition further depends on the life burden intensity of the UV-rays that the skin is exposed to. The probabilistic nature of the process and the uncertainty in the input data is assessed by the use of Monte Carlo simulations. A good fit between experiments on mi…

65C05Skin NeoplasmsComputer scienceQuantitative Biology::Tissues and OrgansMarkovin ketjut0206 medical engineeringMonte Carlo methodPhysics::Medical PhysicsBinary number02 engineering and technologyArticleihosyöpä03 medical and health sciencesMicemedicineAnimalsHumansComputer SimulationStatistical physicsUncertainty quantification60J20stokastiset prosessit030304 developmental biologyProbability0303 health sciencesMarkov chainApplied MathematicsProbabilistic logicUncertaintyState (functional analysis)medicine.disease020601 biomedical engineeringAgricultural and Biological Sciences (miscellaneous)Markov ChainsCardinal pointModeling and Simulation65C40Disease Progressionmatemaattiset mallitSkin cancerMonte Carlo MethodJournal of Mathematical Biology
researchProduct

Gradient flows in random walk spaces

2021

El món digital ha comportat l'aparició de molts tipus de dades, de mida i complexitat creixents. De fet, els dispositius moderns ens permeten obtenir fàcilment imatges de major resolució, així com recopilar dades sobre cerques a la xarxa, anàlisis sanitàries, xarxes socials, sistemes d'informació geogràfica, etc. En conseqüència, l'estudi i el tractament d'aquests grans conjunts de dades té un gran interès i valor. En aquest sentit, els grafs ponderats proporcionen un espai de treball natural i flexible on representar les dades. En aquest context, un vèrtex representa una dada concreta i a cada aresta se li assigna un pes segons alguna mesura de semblança adequadament triada entre els vèrte…

:MATEMÁTICAS [UNESCO]markov processescheeger problemrof modelnonlocal nonlinear partial differential equationsgradient flowsrandom walk spacescalculus of variationsevolution problemsUNESCO::MATEMÁTICAS
researchProduct

Dažādu valūtas tirdzniecības stratēģiju salīdzinājums

2018

Valūtas tirgus ir viens no lielākajiem pasaules finanšu tirgus sektoriem un tam piemīt specifiskas īpašības (piemēram, iespēja tirgoties ar vairāk līdzekļiem nekā ieguldīts), kuras, savukārt, izmanto investori savas peļņas optimizēšanas nolūkā. Maģistra darba mērķis ir izveidot dažādas valūtas tirdzniecības stratēģijas, pielietojot ARIMA, ARMA-GARCH, slēptos Markova modeļus, u.c. metodes, un veikt tirdzniecības simulāciju dažādiem valūtu pāriem, kā arī noskaidrot, vai ar kādu no darbā aprakstītajām metodēm ir iespējams izveidot tādu valūtas tirdzniecības algoritmu, kas ilgtermiņā sniegtu peļņu. Darba gaitā izveidoti četri modeļi, kas veic tirdzniecības simulāciju, balstoties uz valūtas cenu…

ARMA-GARCHMatemātikaslēptie Markova modeļivalūtas tirdzniecībaARIMAMarkova procesi
researchProduct