6533b86dfe1ef96bd12c9800
RESEARCH PRODUCT
Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding
Gregor DiezemannThomas SpeckFabian KnochKen Schäfersubject
0301 basic medicineDiscretizationGeneral Physics and AstronomyMarkov processFOS: Physical sciencesCondensed Matter - Soft Condensed Matter01 natural sciences03 medical and health sciencesMolecular dynamicssymbols.namesake0103 physical sciencesPhysics - Biological PhysicsStatistical physicsPhysical and Theoretical Chemistry010306 general physicsPhysicsQuantitative Biology::BiomoleculesMarkov chainMolecular biophysicsBiomolecules (q-bio.BM)Function (mathematics)030104 developmental biologyQuantitative Biology - BiomoleculesOrders of magnitude (time)Biological Physics (physics.bio-ph)FOS: Biological sciencessymbolsSoft Condensed Matter (cond-mat.soft)Granularitydescription
We present a dynamic coarse-graining technique that allows to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSM), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling we additionally perform steered molecular dynamics simulations and find excellent agreement between the results of the fully atomistic and the dynamically coarse-grained simulations. Our technique allows the determination of the rates of mechanical unfolding in a dynamical range from approximately $10^{-8}$/ns to $1$/ns thus reaching experimentally accessible time regimes without abandoning atomistic resolution.
year | journal | country | edition | language |
---|---|---|---|---|
2017-10-26 |