0000000000125005

AUTHOR

Ken Schäfer

Hybrid Particle-Field Molecular Dynamics Simulations of Charged Amphiphiles in an Aqueous Environment.

We develop and test specific coarse-grained models for charged amphiphilic systems such as palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayer and sodium dodecyl sulfate (SDS) surfactant in an aqueous environment, to verify the ability of the hybrid particle-field method to provide a realistic description of polyelectrolytes. According to the hybrid approach, the intramolecular interactions are treated by a standard molecular Hamiltonian, and the nonelectrostatic intermolecular forces are described by density fields. Electrostatics is introduced as an additional external field obtained by a modified particle-mesh Ewald procedure, as recently proposed [Zhu et al. Phys. Chem. Chem. Phys.…

research product

Temperature dependent mechanical unfolding of calixarene nanocapsules studied by molecular dynamics simulations.

Using atomistic molecular dynamics simulations, we study the temperature dependence of the mechanical unfolding of a model supramolecular complex, a dimer of interlocked calixarene capsules. This system shows reversible transitions between two conformations that are stabilized by different networks of hydrogen bonds. We study the forced dissociation and formation of these networks as a function of temperature and find a strong impact of the nonequilibrium conditions imposed by pulling the system mechanically. The kinetics of the transition between the two conformations is ideally suited to investigate the range of validity of the stochastic models employed in the analysis of force dependent…

research product

Force-dependent folding pathways in mechanically interlocked calixarene dimers via atomistic force quench simulations

Single-molecule force spectroscopy and molecular simulations are well-established techniques to study the mechanical unfolding of supramolecular complexes in various fields of biomolecular physics....

research product

Supramolecular Packing Drives Morphological Transitions of Charged Surfactant Micelles

Abstract The shape and size of self‐assembled structures upon local organization of their molecular building blocks are hard to predict in the presence of long‐range interactions. Combining small‐angle X‐ray/neutron scattering data, theoretical modelling, and computer simulations, sodium dodecyl sulfate (SDS), over a broad range of concentrations and ionic strengths, was investigated. Computer simulations indicate that micellar shape changes are associated with different binding of the counterions. By employing a toy model based on point charges on a surface, and comparing it to experiments and simulations, it is demonstrated that the observed morphological changes are caused by symmetry br…

research product

Force probe simulations using a hybrid scheme with virtual sites.

Hybrid simulations, in which a part of the system is treated with atomistic resolution and the remainder is represented on a coarse-grained level, allow for fast sampling while using the accuracy of atomistic force fields. We apply a hybrid scheme to study the mechanical unfolding and refolding of a molecular complex using force probe molecular dynamics (FPMD) simulations. The degrees of freedom of the solvent molecules are treated in a coarse-grained manner while atomistic resolution is retained for the solute. The coupling between the solvent and the solute is provided using virtual sites. We test two different common coarse-graining procedures, the iterative Boltzmann inversion method an…

research product

Mechanical and Structural Tuning of Reversible Hydrogen Bonding in Interlocked Calixarene Nanocapsules

We present force probe molecular dynamics simulations of dimers of interlocked calixarene nanocapsules and study the impact of structural details and solvent properties on the mechanical unfolding pathways. The system consists of two calixarene "cups" that form a catenane structure via interlocked aliphatic loops of tunable length. The dimer shows reversible rebinding, and the kinetics of the system can be understood in terms of a two-state model for shorter loops (≤14 CH2 units) and a three-state model for longer loops (≥15 CH2 units). The various conformational states of the dimer are stabilized by networks of hydrogen bonds, the mechanical susceptibility of which can be altered by changi…

research product

Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

We present a dynamic coarse-graining technique that allows to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSM), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling we additionally perform steered molecular dynamics simulations and find excellen…

research product