Search results for "Markovianity."

showing 10 items of 29 documents

Non-Markovian Dynamics of a Qubit Due to Single-Photon Scattering in a Waveguide

2018

We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to discuss the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit …

---PhotonWave packetGeneral Physics and AstronomyFOS: Physical sciencesWaveguide QED; open quantum systems; non-Markovianity; quantum optics01 natural sciences010305 fluids & plasmasQuantum mechanics0103 physical sciencesMaster equationMesoscale and Nanoscale Physics (cond-mat.mes-hall)Waveguide (acoustics)quantum optics010306 general physicsQuantumPhysicsQuantum opticsopen quantum systemQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringnon-MarkovianityQubitWaveguide QEDQuantum Physics (quant-ph)Physics - OpticsOptics (physics.optics)
researchProduct

Witnessing non-Markovian effects of quantum processes through Hilbert-Schmidt speed

2020

Non-Markovian effects can speed up the dynamics of quantum systems while the limits of the evolution time can be derived by quantifiers of quantum statistical speed. We introduce a witness for characterizing the non-Markovianity of quantum evolutions through the Hilbert-Schmidt speed (HSS), which is a special type of quantum statistical speed. This witness has the advantage of not requiring diagonalization of evolved density matrix. Its sensitivity is investigated by considering several paradigmatic instances of open quantum systems, such as one qubit subject to phase-covariant noise and Pauli channel, two independent qubits locally interacting with leaky cavities, V-type and $\Lambda $-typ…

Density matrixPhysicsQuantum PhysicsHIlbert-Schmidt speedFOS: Physical sciencesType (model theory)non-Markovianity01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakePauli exclusion principleOpen quantum systemQubitQuantum mechanics0103 physical sciencessymbolsDissipative systemQuditQubitSensitivity (control systems)Quantum Physics (quant-ph)010306 general physicsQuantumPhysical Review A
researchProduct

Dynamical decoupling efficiency versus quantum non-Markovianity

2015

We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrised by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the dynamical decoupling scheme, leading to a worse coherence preservation. We show that each dynamical decoupling pulse reverses the flow of quantum information and, on this basis, we investig…

Dynamical decouplingDephasingnon-Markovianity dynamical decoupling reservoir engineering Ohmic spectra pure dephasing open quantum systemsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesSettore FIS/03 - Fisica Della Materiareservoir engineering010305 fluids & plasmasOhmic spectra0103 physical sciencesStatistical physicsQuantum information010306 general physicsQuantumPhysicsQuantum PhysicsSpectral densitypure dephasingopen quantum systemsnon-Markovianitydynamical decouplingFlow (mathematics)QubitQuantum Physics (quant-ph)Coherence (physics)
researchProduct

Markovian approximation of linear systems with fractional viscoelastic term

2017

It is well known that the response of a linear system enforced by a Gaussian white noise is Markovian. The order of Markovianity is n-1 being n the maximum order of the derivative of the equation ruling the evolution of the system. However when a fractional operator appears, the order of Markovianity of the system becomes infinite. Then the main aim developed in the proposed paper, consists of rewriting the system with fractional term of order r with an "equivalent" one, in which the fractional operator is substituted by two classical differential terms with integer order of derivative int(r) and int(r + 1) (for a real r). In this way the fractional differential equation reverts into a clas…

Markovianity.Mechanics of MaterialsMechanical EngineeringFractional viscoelasticityLinear systemSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Non-Markovian dynamics from band edge effects and static disorder

2017

It was recently shown [S. Lorenzo et al., Sci. Rep. 7, 42729 (2017)] that the presence of static disorder in a bosonic bath - whose normal modes thus become all Anderson-localised - leads to non-Markovianity in the emission of an atom weakly coupled to it (a process which in absence of disorder is fully Markovian). Here, we extend the above analysis beyond the weak-coupling regime for a finite-band bath so as to account for band edge effects. We study the interplay of these with static disorder in the emergence of non-Markovian behaviour in terms of a suitable non-Markovianity measure.

Physics and Astronomy (miscellaneous)Anderson localizactionMarkov processNon-MarkovianityFOS: Physical sciencesEdge (geometry)01 natural sciencesMeasure (mathematics)Static disorderCondensed Matter::Disordered Systems and Neural NetworksSettore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeNormal modeQuantum mechanicsAtom (measure theory)0103 physical sciencesband edge mode010306 general physicsband edge modesPhysicsQuantum PhysicsDynamics (mechanics)disordersymbolsQuantum Physics (quant-ph)Anderson localizaction; band edge modes; disorder; Non-Markovianity; Physics and Astronomy (miscellaneous)
researchProduct

System-environment correlations and Markovian embedding of quantum non-Markovian dynamics

2018

We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed "ancillas", which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of "memory depth" where these correlations are established between the syste…

Physics---Quantum PhysicsProcess (computing)Markov processFOS: Physical sciences01 natural sciencesUnitary stateSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasRendering (computer graphics)open quantum systems non markovianitysymbols.namesakeHeat flux0103 physical sciencessymbolsQuantum systemEmbeddingStatistical physics010306 general physicsQuantum Physics (quant-ph)Quantum
researchProduct

Quantumness and memory of one qubit in a dissipative cavity under classical control

2019

Hybrid quantum-classical systems constitute a promising architecture for useful control strategies of quantum systems by means of a classical device. Here we provide a comprehensive study of the dynamics of various manifestations of quantumness with memory effects, identified by non-Markovianity, for a qubit controlled by a classical field and embedded in a leaky cavity. We consider both Leggett-Garg inequality and quantum witness as experimentally-friendly indicators of quantumness, also studying the geometric phase of the evolved (noisy) quantum state. We show that, under resonant qubit-classical field interaction, a stronger coupling to the classical control leads to enhancement of quant…

PhysicsCouplingQuantum PhysicsField (physics)010308 nuclear & particles physicsNon-MarkovianityFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesSettore FIS/03 - Fisica Della MateriaGeometric phaseQuantum stateOpen quantum systemQuantum mechanicsQubit0103 physical sciencesDissipative systemQuantum informationQuantum witnessQuantum Physics (quant-ph)010306 general physicsClassical controlQuantumLeggett–Garg inequalityAnnals of Physics
researchProduct

Temperature effects on quantum non-Markovianity via collision models

2018

Quantum non-Markovianity represents memory during the system dynamics, which is typically weakened by the temperature. We here study the effects of environmental temperature on the non-Markovianity of an open quantum system by virtue of collision models. The environment is simulated by a chain of ancillary qubits that are prepared in thermal states with a finite temperature $T$. Two distinct non-Markovian mechanisms are considered via two types of collision models, one where the system $S$ consecutively interacts with the ancillas and a second where $S$ collides only with an intermediate system $S'$ which in turn interacts with the ancillas. We show that in both models the relation between …

PhysicsQuantum PhysicsFOS: Physical sciencesCollision modelMemory effectnon-MarkovianityCollision01 natural sciencesTemperature effectsSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSystem dynamicsOpen quantum systemOpen quantum systemQubitQuantum mechanics0103 physical sciencesThermalQuantum Physics (quant-ph)010306 general physicsQuantumCoherence (physics)BackflowPhysical Review A
researchProduct

Emergence of non-Markovianity in the emission process of an atom in a half-cavity

2014

We study quantum non-Markovianity in the early stage of the emission process of a two-level atom coupled to a semi-infinite waveguide, where the waveguide termination behaves as a perfect mirror. Specifically, we restrict to the analysis of the process for times shorter than twice the time delay t_d, where t_d is the duration of a round trip along the atom-mirror path. We show the emergence of a threshold in the parameters space separating the Markovian and non-Markovian regions.

PhysicsQuantum PhysicsProcess (computing)FOS: Physical sciencesAtom (order theory)Markov processopen quantum systemsParameter spacenon-Markovianity open quantum systems spontaneous emission waveguide QEDCondensed Matter Physicsnon-MarkovianityAtomic and Molecular Physics and Opticssymbols.namesakePerfect mirrorwaveguide QEDQuantum mechanicsPath (graph theory)symbolsWaveguide (acoustics)Quantum Physics (quant-ph)spontaneous emissionQuantumMathematical Physics
researchProduct

Distributed correlations and information flows within a hybrid multipartite quantum-classical system

2015

Understanding the non-Markovian mechanisms underlying the revivals of quantum entanglement in the presence of classical environments is central in the theory of quantum information. Tentative interpretations have been given by either the role of the environment as a control device or the concept of hidden entanglement. We address this issue from an information-theoretic point of view. To this aim, we consider a paradigmatic tripartite system, already realized in the laboratory, made of two independent qubits and a random classical field locally interacting with one qubit alone. We study the dynamical relationship between the two-qubit entanglement and the genuine tripartite correlations of …

PhysicsQuantum PhysicsQuantum decoherenceInformation flowClassical environmentNon-MarkovianityFOS: Physical sciencesQuantum correlationQuantum PhysicsQuantum entanglementINFORMAÇÃO QUÂNTICASquashed entanglementMultipartite entanglementSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsMultipartiteOpen quantum systems; Classical environment; Quantum correlations; Information flows; Non-MarkovianityOpen quantum systemQuantum mechanicsQubitStatistical physicsQuantum informationQuantum Physics (quant-ph)Quantum
researchProduct