Search results for "Material"

showing 10 items of 32550 documents

A Model for Low-Cycle Fatigue in Micro-Structured Materials

2019

A microscale formulation for low-cycle fatigue degradation in heterogeneous materials is presented. The interface traction-separation law is modelled by a cohesive zone model for low-cycle fatigue analysis, which is developed in a consistent thermodynamic framework of elastic-plastic-damage mechanics with internal variables. A specific fatigue activation condition allows to model the material degradation related to the elastic-plastic cyclic loading conditions, with tractions levels lower than the static failure condition. A moving endurance surface, in the classic framework of kinematic hardening, enables a pure elastic behaviour without any fatigue degradation for low levels of cyclic tra…

010101 applied mathematics020303 mechanical engineering & transportsMaterials science0203 mechanical engineeringMechanics of MaterialsMechanical EngineeringMicromechanicsGeneral Materials ScienceLow-cycle fatigue02 engineering and technology0101 mathematicsComposite material01 natural sciencesKey Engineering Materials
researchProduct

A Thermodynamically Consistent CZM for Low-Cycle Fatigue Analysis

2018

A cohesive zone model for low-cycle fatigue analysis is developed in a consistent thermodynamic framework of elastic-plastic-damage mechanics with internal variable. A specific fatigue activation condition allows to model the material degradation related to the elastic-plastic cyclic loading conditions, with tractions levels lower than the damage activation condition. A moving endurance surface, in the classic framework of kinematic hardening, enables a pure elastic behavior without any fatigue degradation for low levels loading conditions.

010101 applied mathematics020303 mechanical engineering & transportsMaterials science0203 mechanical engineeringMechanics of MaterialsMechanical EngineeringThermodynamicsGeneral Materials ScienceLow-cycle fatigue02 engineering and technology0101 mathematics01 natural sciencesStrength of materialsKey Engineering Materials
researchProduct

Angular dependence of the domain wall depinning field in the sensors with segmented corners

2017

Rotating domain wall based sensors that have recently been developed are based on a segmented looping geometry. In order to determine the crucial pinning of domain walls in this special geometry, we investigate the depinning under different angles of an applied magnetic field and obtain the angular dependence of the depinning field of the domain walls. Due to the geometry, the depinning field not only exhibits a 180$^\circ$-periodicity but a more complex dependence on the angle. The depinning field depends on two different angles associated with the initial state and the segmented geometry of the corner. We find that depending on the angle of the applied field two different switching proces…

010302 applied physics0301 basic medicineCondensed Matter - Materials ScienceHistoryMaterials scienceField (physics)Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences01 natural sciencesComputer Science ApplicationsEducationMagnetic field03 medical and health sciences030104 developmental biologyDomain wall (magnetism)0103 physical sciencesAngular dependence
researchProduct

Controlled turbulence regime of electron cyclotron resonance ion source for improved multicharged ion performance

2020

Fundamental studies of excitation and non-linear evolution of kinetic instabilities of strongly nonequlibrium hot plasmas confined in open magnetic traps suggest new opportunities for fine-tuning of conventional electron cyclotron resonance (ECR) ion sources. These devices are widely used for the production of particle beams of high charge state ions. Operating the ion source in controlled turbulence regime allows increasing the absorbed power density and therefore the volumetric plasma energy content in the dense part of the discharge surrounded by the ECR surface, which leads to enhanced beam currents of high charge state ions. We report experiments at the ECR ion source at the JYFL accel…

010302 applied physicsAccelerator Physics (physics.acc-ph)Materials scienceAcoustics and UltrasonicsIon beamFOS: Physical sciencesPlasmaCondensed Matter PhysicsKinetic energy7. Clean energy01 natural sciencesElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical sciencesPhysics - Accelerator PhysicsAtomic physicsExcitationBeam (structure)
researchProduct

Effect of space charge on the negative oxygen flux during reactive sputtering

2017

Negative ions often play a distinctive role in the phase formation during reactive sputter deposition. The path of these high energetic ions is often assumed to be straight. In this paper, it is shown that in the context of reactive magnetron sputtering space charge effects are decisive for the energetic negative ion trajectories. To investigate the effect of space charge spreading, reactive magnetron sputter experiments were performed in compound mode with target materials that are expected to have a high secondary ion emission yield (MgO and CeO2). By the combination of energy flux measurements, and simulations, a quantitative value for the negative oxygen ion yield can be derived.

010302 applied physicsAcoustics and UltrasonicsChemistryEnergy fluxContext (language use)02 engineering and technologySputter deposition021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSpace chargeMolecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonCondensed Matter::Materials SciencePhysics::Plasma PhysicsSputteringYield (chemistry)0103 physical sciencesOxygen fluxAtomic physics0210 nano-technologyJournal of Physics D: Applied Physics
researchProduct

Determination of an empirical law of aluminium and magnesium alloys absorption coefficient during Nd :YAG laser interaction

2007

International audience; Welding laser modelling requires knowledge about relative changes of many thermo-physical parameters involved in the interaction. The absorptivity of the material is one of the most important. In this study, experimental measurements of absorptivity with an integrating sphere on two alloys (aluminium and magnesium) were made. These results were compared with an analytical calculation that takes into account the trapping of the beam by multiple reflections inside the keyhole. Based on a statistical method, an empirical law is proposed connecting absorptivity with the peak power of the laser and the duration of interaction. During the interaction, two distinct phenomen…

010302 applied physicsAcoustics and UltrasonicsChemistry[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chemistry.chemical_element02 engineering and technologyWeldingMolar absorptivity021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaser01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionIntegrating spherelawAluminiumAttenuation coefficientNd:YAG laser0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyBeam (structure)
researchProduct

Coloration mechanism of electrochromic Na x WO3 thin films

2019

International audience; The coloration mechanism of tungsten trioxide (WO3) upon insertion of alkali ions is still under debate after several decades of research. This Letter provides new insights into the reversible insertion and coloration mechanisms of Na+ ions in WO3 thin films sputter-deposited on ITO/glass substrates. A unique model based on a constrained spline approach was developed and applied to draw out ε1+iε2 from spectroscopic ellipsometry data from 0.6 to 4.8 eV whatever the state of the electrochromic active layer, i.e. as-deposited, colored or bleached. It is shown that electrochemically intercalated sodium-tungsten trioxide, NaxWO3 (x=0.1, 0.2, 0.35), exhibits an absorption…

010302 applied physicsAlkali ions[PHYS]Physics [physics]Materials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesTungsten trioxideAtomic and Molecular Physics and OpticsActive layerIonchemistry.chemical_compoundOpticschemistryElectrochromismAbsorption band0103 physical sciences[CHIM]Chemical SciencesThin film0210 nano-technologybusinessTrioxide
researchProduct

First principles hybrid Hartree-Fock-DFT calculations of bulk and (001) surface F centers in oxide perovskites and alkaline-earth fluorides

2020

Valuable discussions with E. A. Kotomin are gratefully acknowledged. Research contribution of R. E. and A. I. P. has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applications.” The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsAlkaline earth metalMaterials sciencePhysics and Astronomy (miscellaneous)F centerperovskitesGeneral Physics and AstronomyIonic bondingElectronic structure7. Clean energy01 natural sciencesCrystallographic defectCrystallographyAb initio quantum chemistry methodsVacancy defect0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Ab initio calculations010306 general physicsShallow donorPerovskite (structure)
researchProduct

Savaime sklindančios aukštatemperatūrinės sintezės būdu gautų aliuminio oksinitrido miltelių ir jų keramikų optinės savybės

2021

The reported study was funded by RFBR according to the Research Project No. 19-08-00655. V.P. acknowledges the State Research Program ‘Aug-stas enerģijas fizika un paātrinātāju tehnoloģijas’ (Projekta Nr. VPP-IZM-CERN-2020/1-0002). The Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under Grant Agreement No. 739508, Project CAMART2.

010302 applied physicsAluminium oxynitrideMaterials scienceAlONOptical propertiesAluminium oxynitrideSelf-propagating high-temperature synthesisGeneral Physics and AstronomyCombustion02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundchemistryvisual_art0103 physical sciencesvisual_art.visual_art_medium:NATURAL SCIENCES [Research Subject Categories]Transparent ceramicsCeramicComposite material0210 nano-technologySelf-propagating high-temperature synthesis
researchProduct

Migration kinetics of ion-implanted beryllium in glassy carbon

2008

Abstract Migration kinetics of low-concentration implanted 7 Be in glassy carbon has been studied by the modified radiotracer technique at temperatures 1285 °C and 1340 °C. The annealed sample concentration profiles show two distinctive components: (i) Main profile broadening assigned to beryllium trapping in defects during annealing. (ii) Tail parts on both sides of the profile maximum related to faster migration. Of the latter the profile representing bulk diffusion lies on the region free of defect influence and is well described by concentration-independent diffusivity. The features of the concentration profile broadening towards the sample surface indicate partial Be trapping in defect…

010302 applied physicsAnnealing (metallurgy)Mechanical EngineeringAnalytical chemistrychemistry.chemical_elementDiamond02 engineering and technologyGeneral ChemistryTrappingengineering.materialGlassy carbon021001 nanoscience & nanotechnologyThermal diffusivity01 natural sciencesElectronic Optical and Magnetic MaterialsIonchemistryImpurity0103 physical sciencesMaterials ChemistryengineeringElectrical and Electronic EngineeringBeryllium0210 nano-technologyDiamond and Related Materials
researchProduct