Search results for "Materials Engineering"

showing 10 items of 69 documents

Macroelement Model for In-Plane and Out-of-Plane Responses of Masonry Infills in Frame Structures

2018

A new macroelement model is presented in this paper for the simulation of the in-plane (IP) and out-of-plane (OOP) response of infilled frames subjected to seismic actions. The model consists of two diagonal, one horizontal, and one vertical struts. Each strut is represented by two fiber-section beam-column elements. The model is able to capture the arching action of the wall under an OOP load as well as the interaction between the IP and OOP actions. The proposed modeling approach is sufficiently simple and efficient that it can be used for the static or dynamic analysis of an entire structural system. An experimental validation has been carried out. A further numerical study performed wit…

Masonry infillConcrete and masonry structure0211 other engineering and technologies020101 civil engineering02 engineering and technologyCivil Engineering0201 civil engineeringConcrete and masonry structuresOut of planeOut-of-planeMechanics of MaterialGeneral Materials ScienceArching actionCivil and Structural Engineering021110 strategic defence & security studiesMasonry infillsbusiness.industryMechanical EngineeringFrame (networking)In-planeBuilding and ConstructionStructural engineeringMaterials EngineeringMasonryFiber-section elementInfilled framesSettore ICAR/09 - Tecnica Delle CostruzioniIn planeMechanics of MaterialsMasonry infills; In-plane; Out-of-plane; Arching action; Macromodel; Fiber-section elements; Concrete and masonry structures.Materials Science (all)businessFiber-section elementsGeologyMacromodel
researchProduct

Natural iron oxide (earth colour) deposits in Latvia: an assessment of the possibilities for their use in inorganic pigment manufacturing

2018

Materials Science (miscellaneous)General Chemical EngineeringIron oxide02 engineering and technologyNatural (archaeology)020501 mining & metallurgychemistry.chemical_compound0205 materials engineeringchemistryChemistry (miscellaneous)Environmental chemistryInorganic pigmentsEnvironmental scienceEarth (chemistry)Coloration Technology
researchProduct

Comparison of spring characteristics of titanium-molybdenum alloy and stainless steel

2017

Background Titanium-molybdenum alloy (TMA) and stainless steel (SS) wires are commonly used in orthodontics as arch-wires for tooth movement. However, plastic deformation phenomenon in these arch-wires seems to be a major concern among orthodontists. This study aimed to compare the mechanical properties of TMA and SS wires with different dimensions. Material and Methods Seventy-two wire samples (36 TMA and 36 SS) of three different sizes (19×25, 17×25 and 16×22) were analyzed in vitro, with 12 samples in each group. Various mechanical properties of the wires, including spring-back, bending moment and stiffness were determined using a universal testing machine. Student’s t-test showed statis…

Materials scienceAlloyOrthodonticsOdontología02 engineering and technologyengineering.materiallaw.inventionTitanium molybdenum alloy03 medical and health sciences0302 clinical medicineOptical microscopelawmedicineComposite materialGeneral DentistryUniversal testing machineResearch020502 materialsStiffness030206 dentistry:CIENCIAS MÉDICAS [UNESCO]Ciencias de la salud0205 materials engineeringSpring (device)Tooth movementUNESCO::CIENCIAS MÉDICASengineeringBending momentmedicine.symptom:CIENCIAS MÃ DICAS [UNESCO]
researchProduct

Core-clad phosphate glass fibers for biosensing

2019

Recently, a phosphate glass with composition 20 CaO-20 SrO-10 Na2O-50 P2O5 (mol%) was found to have good potential as a biomaterial and to possess thermal properties suitable for fiber drawing. This study opened the path towards the development of fully bioresorbable fibers promising for biosensing. In the past, this phosphate glass with CeO2 was found to increase the refractive index and the glass stability. Therefore, a new SrO-containing glass was prepared with 1 mol% of CeO2 and core fibers were drawn from it. A core-clad fiber was also processed, where the core was a Ce-doped glass and the clad undoped, to allow for total internal reflection. The mechanical properties of the core and c…

Materials scienceBioengineeringBiosensing Techniques02 engineering and technology010402 general chemistry01 natural sciencesPhosphatesPhosphate glassBiomaterialschemistry.chemical_compoundUltimate tensile strengthComposite materialPhosphoric acidTotal internal reflectionBiomaterialCerium217 Medical engineering021001 nanoscience & nanotechnologyCladding (fiber optics)0104 chemical scienceschemistryStrontiumMechanics of Materials216 Materials engineeringGlass0210 nano-technologyBiosensorRefractive indexMaterials Science and Engineering: C
researchProduct

Investigation of absorber and heterojunction in the pure sulphide kesterite

2021

This paper aims to study the properties of the absorber layer and the heterojunction in kesterite solar cells. The Cu2ZnSnS4 (CZTS) thin films were layered on a glass substrate from a colloidal solution of metal salts and thiourea dissolved in a mixture of water and ethanol and deposited by spin coating technique. The samples were then heat treated in a furnace, in the presence of sulphur powder and under a nitrogen gas flow. The results revealed the formation of homogeneous layers of a pure kesterite phase of CZTS crystallites after heat treatment with correct stoichiometry and oxidation states. The optical transmission measurements indicate an energy band-gap of 1.4 eV and an absorption c…

Materials scienceClay industries. Ceramics. Glass02 engineering and technologySubstrate (electronics)engineering.material7. Clean energyCZTSIndustrial and Manufacturing Engineering[SPI.MAT]Engineering Sciences [physics]/MaterialsAlineación de bandaschemistry.chemical_compoundPelículas delgadasCZTSKesteriteThin filmKesteritaSpin coating020502 materialsHeterojunctionHeterojunciónTP785-8690205 materials engineeringchemistryChemical engineeringMechanics of MaterialsCeramics and CompositesengineeringCrystalliteLayer (electronics)
researchProduct

SEGREGATION CONTROL AT DIRECTIONAL SOLIDIFICATION USING MAGNETIC FIELD AND ELECTRIC CURRENT

2015

International audience

Materials scienceCondensed matter physics020502 materialsGeneral Physics and Astronomy02 engineering and technologyMagnetic field[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]0205 materials engineering[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]Electrical and Electronic EngineeringElectric currentComputingMilieux_MISCELLANEOUSDirectional solidification
researchProduct

Strong, Rapid and Reversible Photochromic Response of Nb doped TiO2 Nanocrystal Colloids in Hole Scavenging Media

2020

Understanding photochromicity is essential for developing new means of modulating the optical properties and optical response of materials. Here, we report on the synthesis and exciting new photochromic behavior of Nb5+ doped TiO2 nanoparticle colloids (NCs). We find that in hole scavenging media, Nb5+ doping significantly improves the photochromic response time of TiO2 nanoparticles. In the infrared regime, Nb-doped TiO2 NCs exhibit an order of magnitude faster photoresponse kinetics than the pristine TiO2. Enhanced photochromic response is observed in the visible light regime as well. The transmittance of Nb-doped TiO2 NCs drops to 10% in less than 2 minutes when irradiated by UV light in…

Materials scienceDopantInfraredDoping221 NanotechnologyPhotochemistry114 Physical sciencesNanoclustersPhotochromismNanocrystal216 Materials engineeringTransmittanceGeneral Materials ScienceVisible spectrum
researchProduct

Visual indicator for the detection of end-of-life criterion for composite high pressure vessels for hydrogen storage

2012

International audience; A model to predict the accumulation of fibre breaks in advanced composites, that takes into account all physical phenomena implicated in fibre failure (i.e. the random nature, stress transfer due to breaks, fibre debonding and viscosity of the matrix) shows clearly that the failure of a unidirectional composite structure results in the formation of random fibre breaks which at higher loads coalesce into clusters of broken fibres. This stage of development is followed almost immediately by failure. This has direct application to filament wound pressure vessels of the type used to store hydrogen under high pressure. A novel, cost effective, method of revealing developi…

Materials scienceFibre failureHydrogen[ SPI.MAT ] Engineering Sciences [physics]/MaterialsComposite numberFailureEnergy Engineering and Power Technologychemistry.chemical_elementLife prediction02 engineering and technology[SPI.MAT]Engineering Sciences [physics]/MaterialsProtein filamentStress (mechanics)Hydrogen storageViscosityMultiscale modellingComposite materialRenewable Energy Sustainability and the Environment020502 materials021001 nanoscience & nanotechnologyCondensed Matter PhysicsPressure vesselFuel Technology0205 materials engineeringchemistryComposite pressure vesselAdvanced composite materials0210 nano-technology
researchProduct

Contributions regarding chemical composition variation in ultrasonic field overlaying welding

2016

Paper presents a new reconditioning method based on ultrasonic field and analyses the modificated structure composition in three zone: filler material, thermal influenced zone, and base material. Also, chemical composition variation as a result of ultrasonic wave influence is studied besides the ultrasonic wave influence on dilution process.

Materials scienceField (physics)020502 materials05 social sciencesMineralogy02 engineering and technologyOverlayWeldingDilutionlaw.invention0205 materials engineeringlaw0502 economics and businessThermalUltrasonic sensorComposite materialChemical composition050203 business & managementIOP Conference Series: Materials Science and Engineering
researchProduct

Thermal-electrical-mechanical simulation of the nickel densification by Spark Plasma Sintering. Comparison with experiments

2016

Abstract Spark Plasma Sintering is a non-conventional process of the powder metallurgy field which uses a high electrical current to rapidly produce fully dense materials. In the present paper, a thermal-electrical-mechanical model developed on ABAQUS Software is proposed to simulate the densification of a nickel disk. A compaction model, studied in [Wolff, C., Mercier, S., Couque, H., Molinari, A., 2012. Modeling of conventional hot compaction and spark plasma sintering based on modified micromechanical models of porous materials. Mechanics of Materials 49 (0), 72–91. URL http://www.sciencedirect.com/science/article/pii/S0167663611002195 ], has been used to reproduce the densification of t…

Materials scienceField (physics)CompactionSpark plasma sinteringchemistry.chemical_element02 engineering and technologyNickelPowder metallurgy[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]ThermalForensic engineering[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringGeneral Materials ScienceComposite materialInstrumentationSpark Plasma SinteringMicromechanical models020502 materials021001 nanoscience & nanotechnologyStrength of materialsNickel0205 materials engineeringchemistryMechanics of Materials0210 nano-technologyPorous mediumSimulationMechanics of Materials
researchProduct