Search results for "Materials Engineering"
showing 9 items of 69 documents
Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films
2020
Halide double perovskites have gained significant attention, owing to their composition of low-toxicity elements, stability in air and long charge-carrier lifetimes. However, most double perovskites, including Cs2AgBiBr6, have wide bandgaps, which limit photo conversion efficiencies. The bandgap can be reduced through hallowing with Sb3+, but Sb-rich alloys are difficult to synthesise due to the high formation energy of Cs2AgSbBr6, which itself has a wide bandgap. We develop a solution-based route to synthesis phase-pure Cs2Ag(SbxBi1-x)Br6 thin films, with the mixing parameter x continuous varying over the entire composition range. We reveal that the mixed alloys (x between 0.5 and 0.9) dem…
Structure and composition of sputter-deposited nickel-tungsten oxide films
2011
Films of mixed nickel-tungsten oxide, denoted NixW1-x oxide, were prepared by reactive DC magnetron co-sputtering from metallic targets and were characterized by Rutherford backscattering spectrometry. X-ray photoelectron spectroscopy, X-ray diffractometry and Raman spectroscopy. A consistent picture of the structure and composition emerged, and at x<0.50 the films comprised a mixture of amorphous WO3 and nanosized NiWO4, at x = 0.50 the nanosized NiWO4 phase was dominating, and at x>0.50 the films contained nanosized NiO and NiWO4.
Tungsten oxide thin films sputter deposited by the reactive gas pulsing process for the dodecane detection
2015
International audience; The DC reactive magnetron sputtering of a metallic tungsten target was performed in an argon + oxygen atmosphere for depositing tungsten oxide thin films. In order to control the oxygen concentration in the films, the reactive gas pulsing process, namely RGPP, was implemented. Rectangular pulses were used with a constant pulsing period T = 16 s whereas the duty cycle α (time of oxygen injection to pulsing period T ratio) was systematically changed from 0 to 100% of T. This pulsing injection of the reactive gas allowed a gradual evolution of the films composition from pure metallic to over-stoichiometric WO3+ɛ’ compounds. These WOx films were sputter deposited on comm…
Crystal structure of isobutylammonium hydrogen oxalate hemihydrate
2014
In the title hydrated molecular salt, C4H12N+·C2HO4−·0.5H2O, the O atom of the water molecule lies on a crystallographic twofold axis. The dihedral angle between the CO2and CO2H planes of the anion is 18.47 (8)°. In the crystal, the anions are connected to each other by strong near-linear O—H...O hydrogen bonds. The water molecules are located between the chains of anions and isobutylamine cations; their O atoms participate as donors and acceptors, respectively, in O—H...O and N—H...O hydrogen bonds, which form channels (dimensions = 4.615 and 3.387 Å) arranged parallel to [010].
A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem
2017
A new data-driven reference vector-guided evolutionary algorithm has been successfully implemented to construct surrogate models for various objectives pertinent to an industrial blast furnace. A total of eight objectives have been modeled using the operational data of the furnace using 12 process variables identified through a principal component analysis and optimized simultaneously. The capability of this algorithm to handle a large number of objectives, which has been lacking earlier, results in a more efficient setting of the operational parameters of the furnace, leading to a precisely optimized hot metal production process. peerReviewed
Ab initio calculations of CaZrO3 (011) surfaces: systematic trends in polar (011) surface calculations of ABO3 perovskites
2019
Financial support via Latvian-Ukrainian Joint Research Project No. LV-UA/2018/2 for A. I. Popov, Latvian Council of Science Project No. 2018/2-0083 “Theoretical prediction of hybrid nanostructured photocatalytic materials for efficient water splitting” for R. I. Eglitis and J. Kleperis as well as ERAF project No. 1.1.1.1/18/A/073 for R. I. Eglitis and J. Purans is greatly acknowledged.
Effects of hydrogen-charging on the properties of S235JR steel
2017
The paper presents the test results of the S235JR steel susceptibility to damage under the influence of hydrogen. The test of mechanical properties was performed on the basis of a static stretch test of non-hydrogenated samples and after cathodic polarization. Electrochemical measurements for the assessment of corrosion resistance of non-hydrogenated and hydrogenated steels were carried out using open circuit potential measurement and registering of potentiodynamic polarization curves in a three-electrode measuring system. Hydrogenation was carried out for between 3 and 24 hours in a solution of 0.1 N sulfuric acid (VI) with the addition of 2 mg/dm 3 of arsenic oxide (III) at an electric cu…
Fractal-like Hierarchical CuO Nano/Microstructures for Large-Surface-to-Volume-Ratio Dip Catalysts
2022
Dip catalysts are attracting interest in both academia and industry for catalyzing important chemical reactions. These provide excellent stability, better recoverability, recyclability, and easy scale-up. Using the unique microstructures of leaf skeletons, we present a fractal-like hierarchical surface that can be used as a versatile and efficient dip catalyst. Copper oxide microcactuses with nanoscalar features were fabricated onto the Bauhinia racemosa leaf skeletons via a combination of physical vapor deposition, electroplating, and chemical oxidation methods. The coated leaf skeletons have a very high surface area, and the three-dimensional (3D) morphology allows the reactants to encoun…
On the high-pressure phase stability and elastic properties ofβ-titanium alloys
2017
We have studied the compressibility and stability of different β-titanium alloys at high pressure, including binary Ti–Mo, Ti–24Nb–4Zr–8Sn (Ti2448) and Ti–36Nb–2Ta–0.3O (gum metal). We observed stability of the β phase in these alloys to 40 GPa, well into the ω phase region in the P–T diagram of pure titanium. Gum metal was pressurised above 70 GPa and forms a phase with a crystal structure similar to the η phase of pure Ti. The bulk moduli determined for the different alloys range from 97 ± 3 GPa (Ti2448) to 124 ± 6 GPa (Ti–16.8Mo–0.13O).