Search results for "Mathematical sciences"

showing 10 items of 43 documents

First search for dyons with the full MoEDAL trapping detector in 13 TeV pp collisions

2021

The MoEDAL trapping detector, consists of approximately 800 kg of aluminium volumes. It was exposed during Run-2 of the LHC program to 6.46 fb^-1 of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminium volumes comprising the detector through a SQUID magnetometer. The presence of a trapped dyon would be signalled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to 5 Dirac charges, and an electric charge up to 200 times the fundamental electric …

General PhysicsMoEDAL electric and magnetic charge dyonPhysics MultidisciplinaryMagnetic monopoleFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences7. Clean energyElectric charge114 Physical sciencesMoEDAL Collaboration09 Engineeringlaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESSTOPPING-POWERlaw0103 physical sciencesPARTICLES010306 general physics01 Mathematical SciencesParticle Physics - PhenomenologyPhysicsRange (particle radiation)Large Hadron ColliderScience & Technology02 Physical Scienceshep-exPhysicsDetectorPersistent currenthep-phSQUIDHigh Energy Physics - PhenomenologyDyonPhysical SciencesHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Spacetime curvature and Higgs stability after inflation

2015

We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the Standard Model only through the non-minimal gravitational coupling $\xi$ of the Higgs field. Such a coupling is required by renormalisation of the Standard Model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for $\xi\gtrsim 1$, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

General PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)spacetime curvaturePhysics MultidisciplinaryVacuum stateFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences09 Engineeringrenormalizationvacuum stateStandard ModelGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)vacuum stability0103 physical sciencesPARTICLE-PRODUCTIONELECTROWEAK VACUUMHiggs fieldHiggs particles010306 general physics01 Mathematical SciencesPlanck scalePhysicsInflation (cosmology)Science & Technology02 Physical SciencesQuantum field theory in curved spacetimeta114010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologyhep-phInflatonFIELDSThe Standard ModelCREATIONHiggs fieldHigh Energy Physics - PhenomenologyPhysical Sciencesastro-ph.COHiggs bosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

2014

The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3$\sigma$ when compared to 4.92 $\pm$ 0.55 expected background events. In the PMNS mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles $\theta_{12}$, $\theta_{23}$, $\theta_{13}$, a mass difference $\Delta m^2_{32}$ and a CP violating phase $\delta_{\mathrm{CP}}$. In this neutrino oscillation scenario, assuming $…

General PhysicsParticle physicsSolar neutrinoPhysics MultidisciplinaryFOS: Physical sciencesGeneral Physics and Astronomy7. Clean energy09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Tau neutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino oscillation01 Mathematical SciencesPhysicsScience & Technology02 Physical Scienceshep-exPhysicsHigh Energy Physics::PhenomenologyT2K experimentFísicaSolar neutrino problemNeutrino detectorT2K CollaborationPhysical SciencesMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino
researchProduct

Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production

2019

MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC…

General PhysicsPhotonPhysics beyond the Standard ModelPhysics MultidisciplinaryMagnetic monopoleGeneral Physics and AstronomyFOS: Physical sciencesddc:500.27. Clean energy01 natural sciences114 Physical sciencesMoEDAL Collaboration09 EngineeringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)STOPPING-POWER0103 physical sciences010306 general physicsPROTON COLLISIONS01 Mathematical SciencesParticle Physics - PhenomenologyPhysicsLarge Hadron ColliderLuminosity (scattering theory)Science & Technology02 Physical SciencesMagnetic monopoleInteraction pointhep-exDirac (video compression format)PhysicsCharge (physics)hep-phHigh Energy Physics - PhenomenologyPhysical SciencesLHCParticle Physics - Experiment
researchProduct

What Do You Need a Mathematician For? Martinus Hortensius ’s “Speech on the Dignity and Utility of the Mathematical Sciences ” (Amsterdam 1634)

2004

Send submissions to David E. Rowe, Fachbereich 17--Mathematik, Johannes Gutenberg University, D55099 Mainz, Germany. I n early modem Europe the term mathematical sciences was used to describe those fields of knowledge that depended on measure, number, and weight--reflecting the much-quoted passage from the Wisdom of Solomon 11, 20: "but thou hast ordered all things in measure and number and weight." This included astrology and architecture as well as arithmetic and astronomy. These scientiae or disciplinae mathematicae were generally subdivided into mathematicae purae, dealing with quantity, continuous and discrete as in geometry and arithmetic, and mathematicae mix tae or mediae, dealing n…

HierarchyMathematical sciencesGeneral Mathematicsmedia_common.quotation_subjectROWECertaintyEpistemologyDignityAstrologyGeographyHistory and Philosophy of ScienceLegitimationCosmographymedia_commonThe Mathematical Intelligencer
researchProduct

The 1-loop effective potential for the Standard Model in curved spacetime

2018

The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which i…

High Energy Physics - TheoryDe Sitter spaceVacuum stateUNIVERSEfield theories in higher dimensionskosmologia01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)INFLATIONRADIATIVE-CORRECTIONSGauge theoryELECTROWEAK VACUUMMathematical physicsPhysics02 Physical SciencesPhysicshep-thhiukkasfysiikan standardimalliRENORMALIZATION-GROUP EQUATIONShep-phSPONTANEOUS SYMMETRY-BREAKINGNuclear & Particles PhysicsHigh Energy Physics - PhenomenologyHIGGS MASSPhysical SciencesGAUGE-THEORIESMathematics::Differential GeometryNuclear and High Energy Physicsgr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Curvatureclassical theories of gravityGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityfield theories in lower dimensions010306 general physics01 Mathematical SciencesInflation (cosmology)Science & TechnologySpacetimeSTABILITYta114010308 nuclear & particles physicsgravitaatioLoop (topology)High Energy Physics - Theory (hep-th)INTERACTING SCALAR FIELDlcsh:QC770-798Perturbation theory (quantum mechanics)Journal of High Energy Physics
researchProduct

Modeling wave propagation in elastic solids via high-order accurate implicit-mesh discontinuous Galerkin methods

2022

A high-order accurate implicit-mesh discontinuous Galerkin framework for wave propagation in single-phase and bi-phase solids is presented. The framework belongs to the embedded-boundary techniques and its novelty regards the spatial discretization, which enables boundary and interface conditions to be enforced with high-order accuracy on curved embedded geometries. High-order accuracy is achieved via high-order quadrature rules for implicitly-defined domains and boundaries, whilst a cell-merging strategy addresses the presence of small cut cells. The framework is used to discretize the governing equations of elastodynamics, written using a first-order hyperbolic momentum-strain formulation…

Implicitly-defined meshesMechanical EngineeringApplied MathematicsMathematicsofComputing_NUMERICALANALYSISComputational MechanicsDiscontinuous Galerkin methodsGeneral Physics and AstronomyImplicitly-defined mesheNumerical Analysis (math.NA)Mathematical SciencesComputer Science ApplicationsHigh-order accuracyEngineeringMechanics of MaterialsEmbedded-boundary methodDiscontinuous Galerkin methodFOS: MathematicsElastodynamicsEmbedded-boundary methodsMathematics - Numerical Analysis
researchProduct

Associations of non-Hodgkin Lymphoma (NHL) risk with autoimmune conditions according to putative NHL loci.

2015

Autoimmune conditions and immune system-related genetic variations are associated with risk of non-Hodgkin lymphoma (NHL). In a pooled analysis of 8,692 NHL cases and 9,260 controls from 14 studies (1988-2007) within the International Lymphoma Epidemiology Consortium, we evaluated the interaction between immune system genetic variants and autoimmune conditions in NHL risk. We evaluated the immunity-related single nucleotide polymorphisms rs1800629 (tumor necrosis factor gene (TNF) G308A), rs1800890 (interleukin-10 gene (IL10) T3575A), rs6457327 (human leukocyte antigen gene (HLA) class I), rs10484561 (HLA class II), and rs2647012 (HLA class II)) and categorized autoimmune conditions as prim…

LymphomaEpidemiologyOriginal Contributionstumor necrosis factorFollicular lymphomaNon-HodgkininteractionSingle-nucleotide polymorphismHuman leukocyte antigenmedicine.disease_causePolymorphism Single NucleotideAutoimmune DiseaseMedical and Health SciencesMathematical SciencesAutoimmunityAutoimmune DiseasesRare Diseasesimmune system diseasesHLA Antigenshuman leukocyte antigenhemic and lymphatic diseasesGenotypemedicineGeneticsHumans2.1 Biological and endogenous factorsPolymorphismAetiologyCancerbusiness.industryTumor Necrosis Factor-alphaLymphoma Non-HodgkinInflammatory and immune systemautoimmune conditionsOdds ratioSingle NucleotideHematologymedicine.diseaseAutoimmune conditions - risk of non-Hodgkin lymphoma (NHL)LymphomaInterleukin-10Case-Control StudiesImmunologyHIV/AIDSbusinessDiffuse large B-cell lymphomaenvironment
researchProduct

Present Status and Future Perspectives of the NEXT Experiment

2014

Gómez Cadenas, Juan José et al.

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsArticle SubjectDouble beta decay experimentchemistry.chemical_elementFOS: Physical sciencesNEXT7. Clean energy01 natural sciencesSignalMathematical SciencesTECNOLOGIA ELECTRONICANuclear physicsXenonDouble beta decay0103 physical sciences010306 general physicsphysics.ins-detPhysicsTime projection chamberIsotope010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)lcsh:QC1-999chemistryPhysical SciencesFísica nuclearlcsh:PhysicsEnergy (signal processing)
researchProduct

Modelling intergranular and transgranular micro-cracking in polycrystalline materials

2018

Abstract In this work, a grain boundary formulation for intergranular and transgranular micro-cracking in three-dimensional polycrystalline aggregates is presented. The formulation is based on the displacement and stress boundary integral equations of solid mechanics and it has the advantage of expressing the polycrystalline problem in terms of grain boundary variables only. The individual grains within the polycrystalline morphology are modelled as generally anisotropic linear elastic domains with random spatial orientation. Transgranular micro-cracking is assumed to occur along specific cleavage planes, whose orientation in space within the grains depend upon the crystallographic lattice.…

Materials scienceIntergranular crackingComputational MechanicsPolycrystalline materialsGeneral Physics and Astronomy02 engineering and technologyMathematical SciencesTransgranular crackingEngineeringPolycrystalline material0203 mechanical engineeringMicro-mechanicsBoundary element methodComposite materialAnisotropyBoundary element methodMechanical EngineeringCohesive zone modellingApplied MathematicsLinear elasticityMetallurgyMicromechanicsMicro-mechanicIntergranular corrosion021001 nanoscience & nanotechnologyComputer Science Applications020303 mechanical engineering & transportsMechanics of MaterialsSolid mechanicsGrain boundaryCrystallite0210 nano-technology
researchProduct