Search results for "Mathematical"

showing 10 items of 7967 documents

Bounds for Bessel functions

1989

We establish lower and upper bounds for the Bessel functionJ v (x) and the modified Bessel functionI v(x) of the first kind. Our chief tool is the differential equation satisfied by these functions.

symbols.namesakeParticle in a spherically symmetric potentialCylindrical harmonicsBessel processGeneral MathematicsMathematical analysisBessel polynomialsStruve functionsymbolsBessel's inequalityBessel functionLommel functionMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

Noether’s International School in Modern Algebra

2020

Pavel Alexandrov and Heinz Hopf met for the first time in Gottingen in the spring of 1926, soon after Alexandrov departed from Blaricum. Hopf had recently taken his doctorate in Berlin under Ludwig Bieberbach and Erhard Schmidt, and his research interests differed sharply from Alexandrov’s work in general topology.

symbols.namesakePhilosophysymbolsGeneral topologySpring (mathematics)Noether's theoremMathematical economicsAbstract algebraInternational school
researchProduct

Erzwingt die Quantenmechanik eine drastische Änderung unseres Weltbilds? Gedanken und Experimente nach Einstein, Podolsky und Rosen

1989

Von den Anfangen der Quantenmechanik bis heute gibt es Versuche, sie als statistische Theorie uber Ensembles individueller ‚klassischer’ Systeme zu interpretieren. Die Bedingungen, unter denen Theorien verborgener Parameter zu deterministischen Beschreibungen dieser individuellen Systeme als ‚klassisch’ angesehen werden konnen, wurden von Einstein, Podolsky und Rosen 1935 formuliert: 1. Physikalische Systeme sind im Prinzip separierbar. 2. Zu jeder physikalischen Grose, deren Wert man ohne Storung des betrachteten Systems mit Sicherheit voraussagen kann, existiert ein ihr entsprechendes Element der physikalischen Realitat. Zusammen sind sie, wie Bell 1964 gezeigt hat, prinzipiell unvertragl…

symbols.namesakePhysical realityVerstehenPhilosophyHidden variable theorysymbolsGeneral Physics and AstronomyEinsteinHumanitiesClassical physicsMathematical physicsAnnalen der Physik
researchProduct

COMPLEX CONVEXITY AND VECTOR-VALUED LITTLEWOOD–PALEY INEQUALITIES

2003

Let 2 p 0s uch thatfHp(X) (� f(0)� p + λ (1 −| z| 2 ) p−1 � f � (z)� p dA(z)) 1/p ,f or all f ∈ H p (X). Applications to embeddings between vector-valued BMOA spaces defined via Poisson integral or Carleson measures are provided.

symbols.namesakePure mathematicsComplex convexityLittlewood paleyGeneral MathematicsMathematical analysisPoisson kernelsymbolsMathematicsBulletin of the London Mathematical Society
researchProduct

Explicit expressions for Sturm-Liouville operator problems

1987

Throughout this paper H will denote a complex separable Hilbert space and L(H) denotes the algebra of all bounded linear operators on H. If T lies in L(H), its spectrum σ(T) is the set of all complex numbers z such zI–T is not invertible in L(H) and its compression spectrum σcomp(T) is the set of all complex numbers z such that the range (zI-T)(H) is not dense in H ([3, p. 240]). This paper is concerned with the Sturm–Liouville operator problemwhere λ is a complex parameter and X(t), Q, Ei, Fi for i = l,2, and t∈[0,a], are bounded operators in L(H). For the scalar case, the classical Sturm-Liouville theory yields a complete solution of the problem, see [4], and [7]. For the finite-dimension…

symbols.namesakePure mathematicsDifferential equationGeneral MathematicsOperator (physics)Mathematical analysisHilbert spacesymbolsSturm–Liouville theoryMathematicsProceedings of the Edinburgh Mathematical Society
researchProduct

Mappings of finite distortion: Reverse inequalities for the Jacobian

2007

Let f be a nonconstant mapping of finite distortion. We establish integrability results on 1/Jf by studying weights that satisfy a weak reverse Holder inequality where the associated constant can depend on the ball in question. Here Jf is the Jacobian determinant of f.

symbols.namesakePure mathematicsDifferential geometryFourier analysisMathematical analysisJacobian matrix and determinantsymbolsGeometry and TopologyBall (mathematics)Reverse holder inequalityMathematicsJournal of Geometric Analysis
researchProduct

Spectral Asymptotics for More General Operators in One Dimension

2019

In this chapter, we generalize the results of Chap. 3. The results and the main ideas are close, but not identical, to the ones of Hager (Ann Henri Poincare 7(6):1035–1064, 2006). We will use some h-pseudodifferential machinery, see for instance Dimassi and Sjostrand (Spectral Asymptotics in the Semi-classical Limit, London Mathematical Society Lecture Note Series, vol 268. Cambridge University Press, Cambridge, 1999).

symbols.namesakePure mathematicsDimension (vector space)Series (mathematics)Mathematical societyPoincaré conjecturesymbolsLimit (mathematics)Mathematics
researchProduct

Riesz-Fischer Maps, Semi-frames and Frames in Rigged Hilbert Spaces

2021

In this note we present a review, some considerations and new results about maps with values in a distribution space and domain in a σ-finite measure space X. Namely, this is a survey about Bessel maps, frames and bases (in particular Riesz and Gel’fand bases) in a distribution space. In this setting, the Riesz-Fischer maps and semi-frames are defined and new results about them are obtained. Some examples in tempered distributions space are examined.

symbols.namesakePure mathematicsDistribution (mathematics)Settore MAT/05 - Analisi MatematicasymbolsHilbert spaceRigged Hilbert spaceSpace (mathematics)Measure (mathematics)Frames Bases Distributions Rigged Hilbert spaceBessel functionDomain (mathematical analysis)Mathematics
researchProduct

On the fractional integral of Weyl inL p

1994

symbols.namesakePure mathematicsGeneral MathematicsMathematical analysissymbolsBanach spaceRiemann integralRiemann–Stieltjes integralDaniell integralFractional quantum mechanicsFourier integral operatorMathematicsFractional calculusMathematische Zeitschrift
researchProduct

Deformed Canonical (anti-)commutation relations and non-self-adjoint hamiltonians

2015

symbols.namesakeQuantum mechanicssymbolsHamiltonian (quantum mechanics)Self-adjoint operatorHarmonic oscillatorMathematicsMathematical physics
researchProduct