Search results for "Mathematics - Algebraic Topology"
showing 8 items of 18 documents
PERIPHERALLY SPECIFIED HOMOMORPHS OF LINK GROUPS
2005
Johnson and Livingston have characterized peripheral structures in homomorphs of knot groups. We extend their approach to the case of links. The main result is an algebraic characterization of all possible peripheral structures in certain homomorphic images of link groups.
Generalized stability for abstract homotopy theories
2017
We show that a derivator is stable if and only if homotopy finite limits and homotopy finite colimits commute, if and only if homotopy finite limit functors have right adjoints, and if and only if homotopy finite colimit functors have left adjoints. These characterizations generalize to an abstract notion of "stability relative to a class of functors", which includes in particular pointedness, semiadditivity, and ordinary stability. To prove them, we develop the theory of derivators enriched over monoidal left derivators and weighted homotopy limits and colimits therein.
Skeleta of affine hypersurfaces
2014
A smooth affine hypersurface Z of complex dimension n is homotopy equivalent to an n-dimensional cell complex. Given a defining polynomial f for Z as well as a regular triangulation of its Newton polytope, we provide a purely combinatorial construction of a compact topological space S as a union of components of real dimension n, and prove that S embeds into Z as a deformation retract. In particular, Z is homotopy equivalent to S.
The homotopy Leray spectral sequence
2018
In this work, we build a spectral sequence in motivic homotopy that is analogous to both the Serre spectral sequence in algebraic topology and the Leray spectral sequence in algebraic geometry. Here, we focus on laying the foundations necessary to build the spectral sequence and give a convenient description of its $E_2$-page. Our description of the $E_2$-page is in terms of homology of the local system of fibers, which is given using a theory similar to Rost's cycle modules. We close by providing some sample applications of the spectral sequence and some hints at future work.
Stable motivic homotopy theory at infinity
2021
In this paper, we initiate a study of motivic homotopy theory at infinity. We use the six functor formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under $\ell$-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers the singular complex at in…
On the tensor degree of finite groups
2013
We study the number of elements $x$ and $y$ of a finite group $G$ such that $x \otimes y= 1_{_{G \otimes G}}$ in the nonabelian tensor square $G \otimes G$ of $G$. This number, divided by $|G|^2$, is called the tensor degree of $G$ and has connection with the exterior degree, introduced few years ago in [P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335--343]. The analysis of upper and lower bounds of the tensor degree allows us to find interesting structural restrictions for the whole group.
Euler Characteristics of Moduli Spaces of Curves
2005
Let ${mathcal M}_g^n$ be the moduli space of n-pointed Riemann surfaces of genus g. Denote by ${\bar {\mathcal M}}_g^n$ the Deligne-Mumford compactification of ${mathcal M}_g^n$. In the present paper, we calculate the orbifold and the ordinary Euler characteristic of ${\bar {\mathcal M}}_g^n$ for any g and n such that n>2-2g.
Voisinages tubulaires épointés et homotopie stable à l'infini
2022
We initiate a study of punctured tubular neighborhoods and homotopy theory at infinity in motivic settings. We use the six functors formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers…