Search results for "Mathematics - Geometric Topology"

showing 10 items of 55 documents

The handlebody group and the images of the second Johnson homomorphism

2020

Given an oriented surface bounding a handlebody, we study the subgroup of its mapping class group defined as the intersection of the handlebody group and the second term of the Johnson filtration: $\mathcal{A} \cap J_2$. We introduce two trace-like operators, inspired by Morita's trace, and show that their kernels coincide with the images by the second Johnson homomorphism $\tau_2$ of $J_2$ and $\mathcal{A} \cap J_2$, respectively. In particular, we answer by the negative to a question asked by Levine about an algebraic description of $\tau_2(\mathcal{A} \cap J_2)$. By the same techniques, and for a Heegaard surface in $S^3$, we also compute the image by $\tau_2$ of the intersection of the …

Mathematics - Geometric TopologyPhysics::Space PhysicsFOS: MathematicsGeometric Topology (math.GT)Condensed Matter::Strongly Correlated Electrons[MATH] Mathematics [math]Geometry and TopologyMathematics::Geometric Topology[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Algebraic & Geometric Topology
researchProduct

Triviality of the $J_4$-equivalence among homology 3-spheres

2021

We prove that all homology 3-spheres are $J_4$-equivalent, i.e. that any homology 3-sphere can be obtained from one another by twisting one of its Heegaard splittings by an element of the mapping class group acting trivially on the fourth nilpotent quotient of the fundamental group of the gluing surface. We do so by exhibiting an element of $J_4$, the fourth term of the Johnson filtration of the mapping class group, on which (the core of) the Casson invariant takes the value $1$. In particular, this provides an explicit example of an element of $J_4$ that is not a commutator of length $2$ in the Torelli group.

Mathematics - Geometric TopologyPhysics::Space PhysicsFOS: MathematicsGeometric Topology (math.GT)Mathematics::Geometric Topology[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Presentations for the punctured mapping class groups in terms of Artin groups

1999

Consider an oriented compact surface F of positive genus, possibly with boundary, and a finite set P of punctures in the interior of F, and define the punctured mapping class group of F relatively to P to be the group of isotopy classes of orientation-preserving homeomorphisms h: F-->F which pointwise fix the boundary of F and such that h(P) = P. In this paper, we calculate presentations for all punctured mapping class groups. More precisely, we show that these groups are isomorphic with quotients of Artin groups by some relations involving fundamental elements of parabolic subgroups.

Pointwise20F38Class (set theory)presentationsGroup (mathematics)20F36Boundary (topology)Geometric Topology (math.GT)mapping class groupsSurface (topology)Mathematics::Geometric TopologyMapping class groupCombinatoricsMathematics - Geometric TopologyArtin groupsGenus (mathematics)FOS: MathematicsIsotopyGeometry and Topology57N0557N05 20F36 20F38MathematicsAlgebraic & Geometric Topology
researchProduct

A Characterization of Quintic Helices

2005

A polynomial curve of degree 5, @a, is a helix if and only if both @[email protected]^'@? and @[email protected]^'@[email protected]^''@? are polynomial functions.

PolynomialTheorem of LancreteducationComputingMilieux_LEGALASPECTSOFCOMPUTINGCharacterization (mathematics)behavioral disciplines and activitiesMathematics::Algebraic TopologyCombinatoricsMathematics - Geometric TopologyTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYhealth services administrationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: Mathematicshealth care economics and organizationsMathematicsPhysics::Biological PhysicsQuantitative Biology::BiomoleculesDegree (graph theory)InformationSystems_INFORMATIONSYSTEMSAPPLICATIONSApplied MathematicsMathematical analysisGeometric Topology (math.GT)Pythagorean hodograph curveshumanitiesQuintic functionComputational MathematicsGeneralized polynomial helices
researchProduct

Commensurability in Artin groups of spherical type

2019

Let $A$ and $A'$ be two Artin groups of spherical type, and let $A_1,\dots,A_p$ (resp. $A'_1,\dots,A'_q$) be the irreducible components of $A$ (resp. $A'$). We show that $A$ and $A'$ are commensurable if and only if $p=q$ and, up to permutation of the indices, $A_i$ and $A'_i$ are commensurable for every $i$. We prove that, if two Artin groups of spherical type are commensurable, then they have the same rank. For a fixed $n$, we give a complete classification of the irreducible Artin groups of rank $n$ that are commensurable with the group of type $A_n$. Note that it will remain 6 pairs of groups to compare to get the complete classification of Artin groups of spherical type up to commensur…

Primary 20F36 Secondary 57M07 20B30Group (mathematics)General MathematicsSpherical typeGeometric Topology (math.GT)Group Theory (math.GR)Type (model theory)Rank (differential topology)Commensurability (mathematics)CombinatoricsPermutationMathematics - Geometric TopologyMathematics::Group TheoryFOS: MathematicsMathematics - Group TheoryMathematics
researchProduct

Small $C^1$ actions of semidirect products on compact manifolds

2020

Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eige…

Pure mathematics37D30[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Cyclic groupDynamical Systems (math.DS)Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60$C^1$–close to the identityMathematics - Geometric TopologyPrimary 37C85. Secondary 20E22 57K32[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMapping torusFOS: Mathematics57R3520E220101 mathematicsAbelian groupMathematics - Dynamical SystemsMathematics37C85010102 general mathematicsGeometric Topology (math.GT)groups acting on manifoldsRiemannian manifoldSurface (topology)57M50fibered $3$–manifoldhyperbolic dynamicsUnit circleMonodromy010307 mathematical physicsGeometry and TopologyFinitely generated groupMathematics - Group Theory
researchProduct

Finite type invariants of knots in homology 3-spheres with respect to null LP-surgeries

2017

We study a theory of finite type invariants for null-homologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries. It is an analogue in the setting of the rational homology of the Goussarov-Rozansky theory for knots in integral homology 3-spheres. We give a partial combinatorial description of the graded space associated with our theory and determine some cases when this description is complete. For null-homologous knots in rational homology 3-spheres with a trivial Alexander polynomial, we show that the Kricker lift of the Kontsevich integral and the Lescop equivariant invariant built from integrals in configuration spaces are universal finite type i…

Pure mathematicsAlexander polynomialPrimary: 57M27Homology (mathematics)01 natural sciencesHomology sphereMathematics::Algebraic TopologyMathematics - Geometric TopologyKnot (unit)Mathematics::K-Theory and Homologybeaded Jacobi diagramknot[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics0101 mathematicsInvariant (mathematics)Mathematics::Symplectic Geometry3-manifoldhomology sphereMathematicsBorromean surgerycalculus010102 general mathematicsGeometric Topology (math.GT)Kontsevich integral16. Peace & justiceMathematics::Geometric TopologymanifoldsFinite type invariantnull-move57M27Finite type invariantLagrangian-preserving surgeryEquivariant map010307 mathematical physicsGeometry and Topology3-manifold
researchProduct

PERIPHERALLY SPECIFIED HOMOMORPHS OF LINK GROUPS

2005

Johnson and Livingston have characterized peripheral structures in homomorphs of knot groups. We extend their approach to the case of links. The main result is an algebraic characterization of all possible peripheral structures in certain homomorphic images of link groups.

Pure mathematicsAlgebra and Number TheoryLink groupGeometric Topology (math.GT)Mathematics::Geometric TopologyMathematics - Geometric Topology57M0557M25FOS: MathematicsAlgebraic Topology (math.AT)57M25; 57M05Mathematics - Algebraic TopologyAlgebraic numberNuclear ExperimentKnot (mathematics)MathematicsJournal of Knot Theory and Its Ramifications
researchProduct

Bing meets Sobolev

2019

We show that, for each $1\le p < 2$, there exists a wild involution $\mathbb S^3\to \mathbb S^3$ in the Sobolev class $W^{1,p}(\mathbb S^3,\mathbb S^3)$.

Pure mathematicsClass (set theory)Sobolev homeomorphismGeneral Mathematics010102 general mathematicsFixed point setMetric Geometry (math.MG)Geometric Topology (math.GT)SPACES01 natural sciencesSobolev spaceMathematics - Geometric TopologyMathematics - Metric GeometryFOS: Mathematicswild involution111 Mathematics57S25 57R12 57N45 46E35 30C65THEOREMInvolution (philosophy)0101 mathematicsMathematicsAPPROXIMATION
researchProduct

Heisenberg quasiregular ellipticity

2016

Following the Euclidean results of Varopoulos and Pankka--Rajala, we provide a necessary topological condition for a sub-Riemannian 3-manifold $M$ to admit a nonconstant quasiregular mapping from the sub-Riemannian Heisenberg group $\mathbb{H}$. As an application, we show that a link complement $S^3\backslash L$ has a sub-Riemannian metric admitting such a mapping only if $L$ is empty, the unknot or Hopf link. In the converse direction, if $L$ is empty, a specific unknot or Hopf link, we construct a quasiregular mapping from $\mathbb{H}$ to $S^3\backslash L$. The main result is obtained by translating a growth condition on $\pi_1(M)$ into the existence of a supersolution to the $4$-harmonic…

Pure mathematicsGeneral MathematicsSobolev–Poincaré inequality01 natural sciences3-sphereMathematics - Geometric TopologyMathematics - Metric GeometryEuclidean geometryHeisenberg groupFOS: Mathematicssub-Riemannian manifold0101 mathematicsComplex Variables (math.CV)topologiaUnknotLink (knot theory)Complement (set theory)MathematicsMathematics::Complex VariablesMathematics - Complex Variablescapacity010102 general mathematicsta111Hopf linkGeometric Topology (math.GT)Metric Geometry (math.MG)quasiregular mappingisoperimetric inequality3-sphereHopf linkcontact manifoldlink complementpotentiaaliteoriaMathematics::Differential GeometryIsoperimetric inequalitymonistot
researchProduct