Search results for "Mathematics - Geometric Topology"

showing 10 items of 55 documents

HOMFLY-PT skein module of singular links in the three-sphere

2012

For a ring R, we denote by [Formula: see text] the free R-module spanned by the isotopy classes of singular links in 𝕊3. Given two invertible elements x, t ∈ R, the HOMFLY-PT skein module of singular links in 𝕊3 (relative to the triple (R, t, x)) is the quotient of [Formula: see text] by local relations, called skein relations, that involve t and x. We compute the HOMFLY-PT skein module of singular links for any R such that (t-1 - t + x) and (t-1 - t - x) are invertible. In particular, we deduce the Conway skein module of singular links.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]HOMFFLY-PT skein modulePure mathematics01 natural scienceslaw.inventionMathematics - Geometric TopologylawMathematics::Quantum Algebra[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencessingular knot singular linkFOS: Mathematics0101 mathematicsQuotientMathematicsRing (mathematics)Algebra and Number TheorySkein010102 general mathematicsSkein relationGeometric Topology (math.GT)Mathematics::Geometric TopologyInvertible matrix57M25Isotopy010307 mathematical physics
researchProduct

Compressed Drinfeld associators

2004

Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associator is a series in two non-commuting variables, satisfying highly complicated algebraic equations - hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algbera L generated by the symbols a,b,c modulo [a,b]=[b,c]=[c,a]. The main result is a description of compressed associators that satisfy the compressed pentagon and hexagon in the quotient L/[[L,L],[L,L]]. The key ingredient is an explicit form of Campbell-Baker-Hausdorff formula in the case when all commutators commute.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Hexagon equationPure mathematicsCampbell–Baker–Hausdorff formulaKnotLie algebraModuloCompressed Vassiliev invariantsPentagon equation01 natural sciencessymbols.namesakeMathematics - Geometric TopologyChord diagramsExtended Bernoulli numbers[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics::Quantum Algebra0103 physical sciencesLie algebraMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)0101 mathematicsAlgebraic numberBernoulli numberQuotientMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Zeta functionDiscrete mathematics[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA]Algebra and Number TheoryVassiliev invariants[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]Drinfeld associator57M25 57M27 11B68 17B01010102 general mathematicsAssociatorQuantum algebraGeometric Topology (math.GT)Kontsevich integralRiemann zeta functionsymbols[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]Compressed associator010307 mathematical physicsBernoulli numbers
researchProduct

Teichmuller Space and Related Topics : Proceedings of the workshop on Geometry, January 20, 2011, JOSAI UNIVERSITY

2012

The theory of geometric structures on a surface with nonempty boundary can be developed by using a decomposit,ion of such a surface into hexagons, in the same way as the theory of geometric structures on a surface without boundary is developed using the decomposition of such a surface into pairs of pants. The basic elements of the theory for surfaces with boundary include the study of measured foliations and of hyperbolic structures on hexagons. It turns out that there is an interesting space of measured foliations on a hexagon, which is equipped with a piecewise-Iinear structure (in fact, a natural cell-decomposition), and this space is a natural boundary for the space of hyperbolic struct…

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Mathematics - Geometric Topologyhyperbolic structureTeichmĂźller spaceTeichmuller space32G15 ; 30F30 ; 30F60[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsGeometric Topology (math.GT)measured foliationhexagon[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Birman's conjecture for singular braids on closed surfaces

2003

Let M be a closed oriented surface of genus g≥1, let Bn(M) be the braid group of M on n strings, and let SBn(M) be the corresponding singular braid monoid. Our purpose in this paper is to prove that the desingularization map η : SBn(M)→ℤ[Bn(M)], introduced in the definition of the Vassiliev invariants (for braids on surfaces), is injective.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]MonoidPure mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics - Geometric TopologyMathematics::Group Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics::Category TheoryMathematics::Quantum AlgebraGenus (mathematics)0103 physical sciencesFOS: MathematicsBraid0101 mathematicsMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]Algebra and Number TheoryConjecture010102 general mathematicsGeometric Topology (math.GT)20F36;57M27Braid theorySurface (topology)Mathematics::Geometric TopologyInjective function57M27010307 mathematical physicsMathematics - Group Theory
researchProduct

On cyclic branched coverings of prime knots

2007

We prove that a prime knot K is not determined by its p-fold cyclic branched cover for at most two odd primes p. Moreover, we show that for a given odd prime p, the p-fold cyclic branched cover of a prime knot K is the p-fold cyclic branched cover of at most one more knot K' non equivalent to K. To prove the main theorem, a result concerning the symmetries of knots is also obtained. This latter result can be interpreted as a characterisation of the trivial knot.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Primary 57M25010102 general mathematicsGeometric Topology (math.GT)01 natural sciencesMathematics::Geometric Topology57M25 (57M12 57M50)57M50CombinatoricsMathematics - Geometric TopologyKnot (unit)Prime knot[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesHomogeneous spaceSecondary 57M12FOS: MathematicsPrimary 57M25; Secondary 57M12; 57M50010307 mathematical physicsGeometry and Topology0101 mathematicsComputingMilieux_MISCELLANEOUS[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Mathematics
researchProduct

On codimension two embeddings up to link-homotopy

2017

We consider knotted annuli in 4-space, called 2-string-links, which are knotted surfaces in codimension two that are naturally related, via closure operations, to both 2-links and 2-torus links. We classify 2-string-links up to link-homotopy by means of a 4-dimensional version of Milnor invariants. The key to our proof is that any 2-string link is link-homotopic to a ribbon one; this allows to use the homotopy classification obtained in the ribbon case by P. Bellingeri and the authors. Along the way, we give a Roseman-type result for immersed surfaces in 4-space. We also discuss the case of ribbon k-string links, for $k\geq 3$.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsHomotopy010102 general mathematicsClosure (topology)Geometric Topology (math.GT)CodimensionMSC: 57Q45 (primary); 57M27; 57Q35 (secondary)01 natural sciencesMathematics::Geometric TopologyMathematics - Geometric Topology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesRibbonKey (cryptography)FOS: Mathematics010307 mathematical physicsGeometry and Topology0101 mathematicsLink (knot theory)Mathematics
researchProduct

Hyperbolic isometries versus symmetries of links

2009

We prove that every finite group is the orientation-preserving isometry group of the complement of a hyperbolic link in the 3-sphere.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsHyperbolic groupHyperbolic linkTotally geodesic surfaces01 natural sciencesRelatively hyperbolic group57M60Mathematics - Geometric Topology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Hyperbolic linksHyperbolic space010102 general mathematicsHyperbolic 3-manifoldHyperbolic manifoldGeometric Topology (math.GT)Algebra010307 mathematical physicsGeometry and TopologyIsometry groupHyperbolic Dehn surgeryHyperbolic Dehn surgeryTopology and its Applications
researchProduct

A note on the Lawrence-Krammer-Bigelow representation

2002

A very popular problem on braid groups has recently been solved by Bigelow and Krammer, namely, they have found a faithful linear representation for the braid group B_n. In their papers, Bigelow and Krammer suggested that their representation is the monodromy representation of a certain fibration. Our goal in this paper is to understand this monodromy representation using standard tools from the theory of hyperplane arrangements. In particular, we prove that the representation of Bigelow and Krammer is a sub-representation of the monodromy representation which we consider, but that it cannot be the whole representation.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsLinear representation[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)52C3001 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]52C35Mathematics - Geometric TopologyMathematics::Group TheoryMathematics::Algebraic Geometry[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics20F36 52C35 52C30 32S22braid groups0101 mathematicsMathematics::Representation TheoryComputingMilieux_MISCELLANEOUSMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]linear representations010102 general mathematicsRepresentation (systemics)FibrationSalvetti complexesGeometric Topology (math.GT)Mathematics::Geometric TopologyHyperplaneMonodromy010307 mathematical physicsGeometry and TopologyMathematics - Group Theory32S22
researchProduct

On the classification of mapping class actions on Thurston's asymmetric metric

2011

AbstractWe study the action of the elements of the mapping class group of a surface of finite type on the Teichmüller space of that surface equipped with Thurston's asymmetric metric. We classify such actions as elliptic, parabolic, hyperbolic and pseudo-hyperbolic, depending on whether the translation distance of such an element is zero or positive and whether the value of this translation distance is attained or not, and we relate these four types to Thurston's classification of mapping class elements. The study is parallel to the one made by Bers in the setting of Teichmüller space equipped with Teichmüller's metric, and to the one made by Daskalopoulos and Wentworth in the setting of Te…

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]TeichmĂźller spacePure mathematicsMathematics::Dynamical SystemsGeneral MathematicsProduct metric01 natural sciencesIntrinsic metricMathematics - Geometric Topology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics32G15 ; 30F60 ; 57M50 ; 57N05TeichmĂźller spaceMathematics::Complex VariablesInjective metric space010102 general mathematicsMathematical analysisThurston's asymmetric metricGeometric Topology (math.GT)mapping class groupSurface (topology)Mathematics::Geometric TopologyMapping class groupConvex metric spaceMetric (mathematics)010307 mathematical physicsMathematics::Differential Geometry
researchProduct

From braid groups to mapping class groups

2005

This paper is a survey of some properties of the braid groups and related groups that lead to questions on mapping class groups.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]20F3620F36; 57M99Geometric Topology (math.GT)Group Theory (math.GR)[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics - Geometric Topology57M99[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsMathematics - Group Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Proceedings of Symposia in Pure Mathematics
researchProduct