Search results for "Maximal function"

showing 9 items of 19 documents

Estimates of maximal functions measuring local smoothness

1999

Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. Letf ∈L(I n ) (I≡[0,1]. Set $${\mathcal{N}}_\eta f(x) = \sup \frac{1}{{\left| Q \right|\eta (\left| Q \right|^{1/n} )}} \smallint _Q \left| {f(t) - f(x)} \right|dt,$$ , where the supremum is taken over all cubes containing the pointx. Forη=t α (0<α≤1) this definition was given by A.Calderon. In the paper we prove estimates of the maximal functions $${\mathcal{N}}_\eta f$$ , along with some embedding theorems. In particular, we prove the following Sobolev type inequality: if $$1 \leqslant p< q< \infty , \theta \equiv n(1/p - 1/q)< 1, and \eta (t) \leqslant t^\theta \sigma (t),$$ , then $$\parallel {\mathcal{N}}_…

Sobolev spaceDiscrete mathematicsSmoothness (probability theory)General MathematicsMaximal functionType inequalityModulus of continuityMathematicsAnalysis Mathematica
researchProduct

Maximal potentials, maximal singular integrals, and the spherical maximal function

2014

We introduce a notion of maximal potentials and we prove that they form bounded operators from L to the homogeneous Sobolev space Ẇ 1,p for all n/(n − 1) < p < n. We apply this result to the problem of boundedness of the spherical maximal operator in Sobolev spaces.

Sobolev spaceMathematics::Functional AnalysisHomogeneousApplied MathematicsGeneral MathematicsBounded functionMathematical analysisMathematics::Analysis of PDEsMaximal operatorMaximal functionSingular integralMathematicsSobolev inequalityProceedings of the American Mathematical Society
researchProduct

Continuity of the maximal operator in Sobolev spaces

2006

We establish the continuity of the Hardy-Littlewood maximal operator on Sobolev spaces W 1,p (R n ), 1 < p < ∞. As an auxiliary tool we prove an explicit formula for the derivative of the maximal function.

Sobolev spaceMathematics::Functional AnalysisPure mathematicsApplied MathematicsGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMaximal operatorMaximal functionDerivativeSobolev inequalityMathematicsProceedings of the American Mathematical Society
researchProduct

REGULARITY OF THE FRACTIONAL MAXIMAL FUNCTION

2003

The purpose of this work is to show that the fractional maximal operator has somewhat unexpected regularity properties. The main result shows that the fractional maximal operator maps -spaces boundedly into certain first-order Sobolev spaces. It is also proved that the fractional maximal operator preserves first-order Sobolev spaces. This extends known results for the Hardy–Littlewood maximal operator.

Sobolev spaceMathematics::Functional AnalysisPure mathematicsWork (thermodynamics)General MathematicsMathematical analysisMaximal operatorMaximal functionMathematicsBulletin of the London Mathematical Society
researchProduct

Maximal Function Methods for Sobolev Spaces

2021

Sobolev spacePure mathematicsMaximal functionMathematics
researchProduct

Fractional Maximal Functions in Metric Measure Spaces

2013

Abstract We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.

fractional sobolev spacePure mathematicsQA299.6-433Applied MathematicsMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsSpace (mathematics)Lipschitz continuityMeasure (mathematics)Functional Analysis (math.FA)Sobolev spaceMathematics - Functional Analysiscampanato space42B25 46E35metric measure spaceMetric (mathematics)FOS: Mathematicsfractional maximal function46e35Maximal functionGeometry and Topology42b25AnalysisMathematicsAnalysis and Geometry in Metric Spaces
researchProduct

Weighted Hardy Spaces of Quasiconformal Mappings

2019

We establish a weighted version of the $H^p$-theory of quasiconformal mappings.

radial maximal functionsfunktioteoriaHardy spacesMathematics - Complex Variablesmodulus estimateHardyn avaruudetFOS: Mathematicsquasiconformal mappingGeometry and TopologyComplex Variables (math.CV)nontangential30C65The Journal of Geometric Analysis
researchProduct

Rectifiability and singular integrals

1995

symbols.namesakeMathematical analysisPrincipal valueEuclidean geometrysymbolsMaximal functionPoint (geometry)GeometryHardy–Littlewood maximal functionHilbert transformSingular integralMeasure (mathematics)Mathematics
researchProduct

MR2541232 (2010j:60101) Yong, Jiao; Lihua, Peng; Peide, Liu Atomic decompositions of Lorentz martingale spaces and applications. J. Funct. Spaces App…

2010

In this paper atomic decomposition theorems of martingales are considered. In particular, three atomic decomposition theorems for Lorentz martingale spacesHs p,q, Qp,q andDp,q, where 0 < p < 1, and 0 < q 1, are proved. As a consequence of these decompositions, the authors obtain a sufficient condition for a sublinear operator T, defined on the previous Lorentz martingale spaces Hs p,q, Qp,q and Dp,q and taking values in Lorentz spaces Lr, to be bounded. Also, a restricted weak-type interpolation theorem is established.

weak Orlicz space maximal function martingale space martingale inequality
researchProduct