Search results for "Mcf-7 Cells"

showing 10 items of 103 documents

Small-molecule affinity capture of DNA/RNA quadruplexes and their identification in vitro and in vivo through the G4RP protocol

2019

International audience; Guanine-rich DNA and RNA sequences can fold into higher-order structures known as G-quadruplexes (or G4-DNA and G4-RNA, respectively). The prevalence of the G4 landscapes in the human genome, transcriptome and ncRNAome (non-coding RNA), collectively known as G4ome, is strongly suggestive of biological relevance at multiple levels (gene expression , replication). Small-molecules can be used to track G4s in living cells for the functional characterization of G4s in both normal and disease-associated changes in cell biology. Here, we describe biotinylated biomimetic ligands referred to as Bio-TASQ and their use as molecular tools that allow for isolating G4s through aff…

Computational biologyBiologyG-quadruplexLigandsTranscriptome03 medical and health scienceschemistry.chemical_compound0302 clinical medicineChemical Biology and Nucleic Acid ChemistryGene expressionGeneticsHumansBiotinylation[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biology0303 health sciencesGenome HumanReverse Transcriptase Polymerase Chain ReactionRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyDNAG-QuadruplexeschemistryBiotinylationNucleic acidMCF-7 CellsRNAHuman genomeTranscriptome030217 neurology & neurosurgeryDNA
researchProduct

Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence

2020

AbstractTranscriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-me…

Cyclin-Dependent Kinase Inhibitor p21SenescenceAcademicSubjects/SCI00010DNA repairDNA damageRAD51E2F4 Transcription FactorBiologyDNA Mismatch Repair03 medical and health sciences0302 clinical medicineCell Line TumorBenzo(a)pyreneGeneticsHumansCellular SenescenceCell Line Transformed030304 developmental biology0303 health sciencesGene regulation Chromatin and EpigeneticsRecombinational DNA RepairEpithelial CellsKv Channel-Interacting ProteinsCell Cycle CheckpointsDNAFibroblastsCell biologyDNA-Binding ProteinsRepressor ProteinsMSH6DNA Repair EnzymesExodeoxyribonucleasesMutS Homolog 2 ProteinGamma RaysMSH2030220 oncology & carcinogenesisCarcinogensMCF-7 CellsDNA mismatch repairRad51 RecombinaseCell agingE2F1 Transcription FactorDNA DamageSignal TransductionNucleic Acids Research
researchProduct

DNA Junction Ligands Trigger DNA Damage and Are Synthetic Lethal with DNA Repair Inhibitors in Cancer Cells.

2019

International audience; Translocation of DNA and RNA polymerases along their duplex substrates results in DNA supercoiling. This torsional stress promotes the formation of plectonemic structures, including three-way DNA junction (TWJ), which can block DNA transactions and lead to DNA damage. While cells have evolved multiple mechanisms to prevent the accumulation of such structures, stabilizing TWJ through ad hoc ligands offer an opportunity to trigger DNA damage in cells with high level of transcription and replication, such as cancer cells. Here, we develop a series of azacryptand-based TWJ ligands, we thoroughly characterize their TWJ-interacting properties in vitro and demonstrate their…

DNA RepairDNA repairDNA damage[SDV]Life Sciences [q-bio][SDV.CAN]Life Sciences [q-bio]/CancerSynthetic lethality[CHIM.THER]Chemical Sciences/Medicinal Chemistry010402 general chemistryLigands01 natural sciencesBiochemistryCatalysischemistry.chemical_compoundColloid and Surface ChemistryTranscription (biology)Cell Line TumorHumansPolymeraseCell Proliferationbiology[CHIM.ORGA]Chemical Sciences/Organic chemistryGeneral ChemistryDNA3. Good health0104 chemical sciencesCell biologychemistryCancer cellbiology.proteinMCF-7 CellsDNA supercoilNucleic Acid ConformationDNADNA DamageJournal of the American Chemical Society
researchProduct

Cytotoxic Activity of Organotin(IV) Derivatives with Triazolopyrimidine Containing Exocyclic Oxygen Atoms

2020

In this study cytotoxicity of organotin(IV) compounds with 1,2,4-triazolo[1,5-a]pyrimidines, Me3Sn(5tpO) (1), n-Bu3Sn(5tpO) (2), Me3Sn(mtpO) (3), n-Bu3Sn(mtpO) (4), n-Bu3Sn(HtpO2) (5), Ph3Sn(HtpO2) (6) where 5HtpO = 4,5-dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, HmtpO = 4,7-dihydro-5-methyl-7-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, and H2tpO2 = 4,5,6,7-tetrahydro-5,7- dioxo-[1,2,4]triazolo-[1,5-a]-pyrimidine, was assessed on three different human tumor cell lines: HCT-116 (colorectal carcinoma), HepG2 (hepatocarcinoma) and MCF-7 (breast cancer). While 1 and 3 were inactive, compounds 2, 4, 5 and 6 inhibited the growth of the three tumor cell lines with IC50 values in the submicromolar …

DenticityCellPharmaceutical Science01 natural sciencesAnalytical Chemistrychemistry.chemical_compoundDrug DiscoveryOrganotin CompoundstriazolopyrimidineCytotoxicityMembrane Potential MitochondrialCytotoxinsapoptosisBiological activityHep G2 CellsG2 Phase Cell Cycle CheckpointsGene Expression Regulation Neoplasticmedicine.anatomical_structureChemistry (miscellaneous)Mitochondrial MembranesMCF-7 CellsMolecular MedicineCyclin-Dependent Kinase Inhibitor p21crystal structurein vitro anticancer activityPyrimidineCell SurvivalStereochemistryorganotin(iv)010402 general chemistryArticlelcsh:QD241-441Inhibitory Concentration 50Structure-Activity Relationshiplcsh:Organic chemistrymedicineHumansPhysical and Theoretical ChemistryMetallodrug010405 organic chemistryLigandOrganic ChemistryTriazolesHCT116 CellsapoptosiG1 Phase Cell Cycle Checkpoints0104 chemical sciencesPyrimidineschemistrymetallodrugsCell cultureApoptosisDrug DesignTumor Suppressor Protein p53Reactive Oxygen SpeciesMolecules
researchProduct

The new 5- or 6-azapyrimidine and cyanuric acid derivatives of L-ascorbic acid bearing the free C-5 hydroxy or C-4 amino group at the ethylenic space…

2011

Abstract We report on the synthesis of the novel types of cytosine and 5-azacytosine (1–9), uracil and 6-azauracil (13–18) and cyanuric acid (19–22) derivatives of l -ascorbic acid, and on their cytostatic activity evaluation in human malignant tumour cell lines vs. their cytotoxic effects on human normal fibroblasts (WI38). The CD spectra analysis revealed that cytosine (5 and 6), uracil (14–16), 6-azauracil (17) and cyanuric acid (21) derivatives of l -ascorbic acid bearing free amino group at ethylenic spacer existed as a racemic mixture of enantiomers, whereas L-ascorbic derivatives containing the C-5 substituted hydroxy group at the ethylenic spacer were obtained in (4R, 5S) enantiomer…

Double bondStereochemistryAscorbic AcidCrystallography X-Ray010402 general chemistry01 natural sciencesCell LineCytosineInhibitory Concentration 50Structure-Activity Relationship03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDrug DiscoveryHumansUracilta116Pharmacologychemistry.chemical_classificationTriazinespyrimidine and cyanuric acid derivatives; L-ascorbic acid; circular dichroism; cytostatic activity evaluation; X-ray diffractionOrganic ChemistryAbsolute configurationHydrogen BondingStereoisomerismUracilBiological activityHep G2 CellsGeneral MedicineFibroblastsCytostatic AgentsAscorbic acidpyrimidine and cyanuric acid derivatives ; L-ascorbic acid ; circular dichroism ; cytostatic activity evaluation ; X-ray diffraction ; cell cycle analysis0104 chemical sciences3. Good healthchemistry030220 oncology & carcinogenesisS Phase Cell Cycle CheckpointsMCF-7 CellsCyanuric acidCytosineLactoneHeLa Cells
researchProduct

The Binomial “Inflammation-Epigenetics” in Breast Cancer Progression and Bone Metastasis: IL-1β Actions Are Influenced by TET Inhibitor in MCF-7 Cell…

2022

The existence of a tight relationship between inflammation and epigenetics that in primary breast tumor cells can lead to tumor progression and the formation of bone metastases was investigated. It was highlighted how the induction of tumor progression and bone metastasis by Interleukin-1 beta, in a non-metastatic breast cancer cell line, MCF-7, was dependent on the de-methylating actions of ten-eleven translocation proteins (TETs). In fact, the inhibition of their activity by the Bobcat339 molecule, an inhibitor of TET enzymes, determined on the one hand, the modulation of the epithelial-mesenchymal transition process, and on the other hand, the reduction in the expression of markers of bo…

Epithelial-Mesenchymal TransitionDNA methylation; bone metastasis; inflammation; Interleukin-1β; ten-eleven translocation proteins; MCF-7 cell lineInterleukin-1betaBreast NeoplasmsBone NeoplasmsMCF-7 cell lineCatalysisEpigenesis GeneticInorganic ChemistrySettore BIO/13 - Biologia ApplicataCell Line TumorHumansPhysical and Theoretical ChemistryMolecular BiologySpectroscopybone metastasisDNA methylationten-eleven translocation proteinsOrganic ChemistryGeneral MedicineInterleukin-1βComputer Science ApplicationsSettore BIO/18 - GeneticainflammationMCF-7 CellsFemaleInflammatory Breast NeoplasmsInternational Journal of Molecular Sciences
researchProduct

Configurable low-cost plotter device for fabrication of multi-color sub-cellular scale microarrays.

2014

We report on the construction and operation of a low-cost plotter for fabrication of microarrays for multiplexed single-cell analyses. The printing head consists of polymeric pyramidal pens mounted on a rotation stage installed on an aluminium frame. This construction enables printing of microarrays onto glass substrates mounted on a tilt stage, controlled by a Lab-View operated user interface. The plotter can be assembled by typical academic workshops from components of less than 15 000 Euro. The functionality of the instrument is demonstrated by printing DNA microarrays on the area of 0.5 squared centimeters using up to three different oligonucleotides. Typical feature sizes are 5 μm diam…

FabricationMaterials scienceScale (ratio)NanotechnologyMultiplexingBiomaterialsUser-Computer InterfacePlotterHumansGeneral Materials ScienceBiochipOligonucleotide Array Sequence AnalysisEGF ReceptorsEpidermal Growth FactorOligonucleotideDNA-directed protein immobilization EGF receptors device automation multiplexed patterns polymer pen lithographyGeneral ChemistryMicrofluidic Analytical TechniquesErbB ReceptorsTissue Array AnalysisCosts and Cost AnalysisMCF-7 CellsPrintingDNA microarraySingle-Cell AnalysisBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine

2019

Very recent red-emissive carbon nanodots (CDs) have shown potential as near-infrared converting tools to produce local heat useful in cancer theranostics. Besides, CDs seem very appealing for clinical applications combining hyperthermia, imaging, and drug delivery in a single platform capable of selectively targeting cancer cells. However, CDs still suffer from dramatic dot-to-dot variability issues such that a rational design of their structural, optical, and chemical characteristics for medical applications has been impossible so far. Herein, we report for the first time a simple and highly controllable layer-by-layer synthesis of biotin-decorated CDs with monodisperse size distribution, …

Fluorescence-lifetime imaging microscopyphotothermal therapyMaterials scienceCell SurvivalAntineoplastic AgentsNanotechnology02 engineering and technology010402 general chemistrytargeted cancer therapy01 natural sciencesDrug Delivery Systemsbiotincarbon nanodotCell Line TumorCarbon nanodotsHumansGeneral Materials SciencePrecision MedicineRational designimagingPhotothermal therapy021001 nanoscience & nanotechnologyCarbonNanostructures0104 chemical sciencesbiotin; carbon nanodots; imaging; photothermal therapy; targeted cancer therapy.Settore CHIM/09 - Farmaceutico Tecnologico ApplicativoBiotinylationDrug deliveryCancer cellMCF-7 CellsSurface modification0210 nano-technologyACS Applied Materials & Interfaces
researchProduct

Glycopeptide-functionalized gold nanoparticles for antibody induction against the tumor associated mucin-1 glycoprotein

2015

We report the preparation of gold nanoparticle (AuNP)-based vaccine candidates against the tumor-associated form of the mucin-1 (MUC1) glycoprotein. Chimeric peptides, consisting of a glycopeptide sequence derived from MUC1 and the T-cell epitope P30 sequence were immobilized on PEGylated AuNPs and the ability to induce selective antibodies in vivo was investigated. After immunization, mice showed significant MHC-II mediated immune responses and their antisera recognized human MCF-7 breast cancer cells. Nanoparticles designed according to this report may become key players in the development of anticancer vaccines.

Genes MHC Class IIMolecular Sequence DataClinical BiochemistryEpitopes T-LymphocyteMetal NanoparticlesPharmaceutical Science02 engineering and technology010402 general chemistryCancer Vaccines01 natural sciencesBiochemistryAntibodiesEpitopeMiceImmune systemNeoplasmsDrug DiscoveryAnimalsHumansAmino Acid Sequenceskin and connective tissue diseasesMolecular BiologyMUC1Cancerchemistry.chemical_classificationAntiserumVaccinesbiologyMucin-1Organic ChemistryGlycopeptides021001 nanoscience & nanotechnologyMolecular biologyGlycopeptide0104 chemical scienceschemistryColloidal goldImmunologyMCF-7 Cellsbiology.proteinNanoparticlesMolecular MedicineImmunizationGoldAntibody0210 nano-technologyGlycoproteinBioorganic & Medicinal Chemistry
researchProduct

Cytotoxicity and chemosensitizing activity of amphiphilic poly(glycerol)-poly(alkylene oxide) block copolymers.

2014

All polymeric chemosensitizers proposed thus far have a linear poly(ethylene glycol) (PEG) hydrophilic block. To testify whether precisely this chemical structure and architecture of the hydrophilic block is a prerequisite for chemosensitization, we tested a series of novel block copolymers containing a hyperbranched polyglycerol segment as a hydrophilic block (PPO-NG copolymers) on multi-drug-resistant (MDR) tumor cells in culture. PPO-NG copolymers inhibited MDR of three cell lines, indicating that the linear PEG can be substituted for a hyperbranched polyglycerol block without loss of the polymers' chemosensitizing activity. The extent of MDR reversal increased with the polymers affinity…

GlycerolPolymers and PlasticsCell SurvivalPolymersBioengineeringAntineoplastic AgentsMicellePolyethylene GlycolsBiomaterialschemistry.chemical_compoundInhibitory Concentration 50Polymer chemistryAmphiphilePEG ratioMaterials ChemistryCopolymerHumansATP Binding Cassette Transporter Subfamily B Member 1CytotoxicityMicelleschemistry.chemical_classificationDrug SynergismPolymerPoloxamerDrug Resistance MultiplechemistryDoxorubicinDrug Resistance NeoplasmMCF-7 CellsDrug Screening Assays AntitumorK562 CellsEthylene glycolHydrophobic and Hydrophilic InteractionsBiomacromolecules
researchProduct