Search results for "Mean free path"
showing 4 items of 24 documents
Dependency of Energy-, Position- and Depth of Interaction Resolution on Scintillation Crystal Coating and Geometry
2008
Options for optimizing the energy and spatial resolution of gamma-ray imaging detectors based on thick, monolithic crystals shaped like flat-topped pyramids were studied. Monte Carlo simulations were made of the scintillation light transport for evaluating the effect of four parameters on the energy resolution, the spatial resolutions, and the depth of interaction (DOI) resolution of the gamma-ray imaging detector. These four parameters are: the reflectivity of the surface coating; the scatter mean free path; the absorption mean free path of the scintillation light; and the angle that defines the inclination of the sides of the pyramidal frustum. In real detectors, the values for the mean f…
Neutrino mean free path in neutron matter with Brussels-Montreal Skyrme functionals
2016
We calculate the neutrino mean free path in cold neutron matter with some modern Brussels-Montreal functionals. The three typical functionals used in this article produce quite different results implying a possible impact on the cooling mechanism of neutron stars.
Spin Polarimetry and Magnetic Dichroism on a Buried Magnetic Layer Using Hard X-ray Photoelectron Spectroscopy
2011
The spin-resolved electronic structure of buried magnetic layers is studied by hard X-ray photoelectron spectroscopy (HAXPES) using a spin polarimeter in combination with a high-energy hemispherical electron analyzer at the high-brilliance BL47XU beamline (SPring-8, Japan). Spin-resolved photoelectron spectra are analyzed in comparison with the results of magnetic linear and circular dichroism in photoelectron emission in the case of buried Co2FeAl0.5Si0.5 layers. The relatively large inelastic mean free path (up to 20 nm) of fast photoelectrons enables us to extend the HAXPES technique with electron-spin polarimetry and to develop spin analysis techniques for buried magnetic multilayers a…
Electromagnetic behaviour of superconductive amorphous metals
2005
The penetration depth of the magnetic field into an amorphous superconductor is calculated. The ratio of the London penetration depth δL to the electron free path le under zero temperature is above unity for almost all amorphous metals. That is why pure metals, in a superconducting state, change from type I superconductors to type II superconductors during the crystalline–amorphous transition.