Search results for "Mechanical Phenomena"

showing 10 items of 532 documents

Numerical model for the shear rheology of two-dimensional wet foams with deformable bubbles

2014

Shearing of two-dimensional wet foam is simulated using an introduced numerical model, and results are compared to those of experiments. This model features realistically deformable bubbles, which distinguishes it from previously used models for wet foam. The internal bubble dynamics and their contact interactions are also separated in the model, making it possible to investigate the effects of the related microscale properties of the model on the macroscale phenomena. Validity of model assumptions was proved here by agreement between the simulated and measured Herschel-Bulkley rheology, and shear-induced relaxation times. This model also suggests a relationship between the shear stress and…

Materials scienceBubbledeformable bubbles01 natural sciences010305 fluids & plasmasDiffusionPhysics::Fluid DynamicsShear rheologyRheology0103 physical sciencesShear stressPressureshear rheology010306 general physicsMicroscale chemistryMechanical PhenomenaShearing (physics)Solid particlewet foamsta114MechanicsModels TheoreticalCondensed Matter::Soft Condensed MatterStress MechanicalRheologyBubble deformationPhysical Review E
researchProduct

Mechanical, degradation and drug-release behavior of nano-grained Fe-Ag composites for biomedical applications.

2018

Abstract An original fabrication route of high-strength bulk Fe-5Ag and Fe-10Ag nanocomposites with enhanced degradation rate is reported. Near fully dense materials with fine nanostructures and uniform distribution of Ag nanoparticles were obtained employing high energy attrition milling of Fe-Ag2O powder blends followed by cold sintering – high pressure consolidation at ambient temperature that allowed the retention of the nanoscale structure. Annealing in hydrogen flow at 550 °C resulted in enhanced ductility without coarsening the nanostructure. The strength in compression of Fe5Ag and Fe10Ag nanocomposites was several-fold higher than the values reported for similar composites with mic…

Materials scienceNanostructureHot TemperatureSilverAnnealing (metallurgy)Cell SurvivalIronBiomedical EngineeringSinteringMetal Nanoparticles02 engineering and technology010402 general chemistry01 natural sciencesCorrosionBiomaterialsFlexural strengthVancomycinNano-ElectrochemistryHumansComposite materialMechanical PhenomenaDrug CarriersNanocompositeOsteoblasts021001 nanoscience & nanotechnologyGrain size0104 chemical sciencesCorrosionDrug LiberationMechanics of Materials0210 nano-technologyJournal of the mechanical behavior of biomedical materials
researchProduct

Carboxymethylation of alkali extracted xylan for preparation of bio-based packaging films

2012

This study describes the synthesis of carboxymethylxylan (CMX) and investigates its suitability as a film for packaging applications. High-purity polymeric xylan was extracted from commercial bleached birch kraft pulp and converted to CMX with three different degrees of substitution (DSs). The water vapor sorption, mechanical, and barrier properties of the films prepared from CMX were tested. Increasing DS of CMX films resulted in an increase in elongation at break and a decrease in tensile strength and Young's modulus. The DS also affected the barrier properties of the films. CMX films with higher DS showed improved (reduced) oxygen permeability (OP), and the water vapor permeability (WVP)…

Materials scienceOptical PhenomenaPolymers and PlasticsStarchXylan (coating)02 engineering and technology010402 general chemistryMethylation01 natural sciencesOxygen permeabilitychemistry.chemical_compoundUltimate tensile strengthProduct PackagingMaterials ChemistryComposite materialCelluloseta116BetulaMechanical PhenomenaOrganic ChemistryExtraction (chemistry)WaterSorptionHydrogen-Ion Concentration021001 nanoscience & nanotechnology0104 chemical sciencesMolecular WeightChemical engineeringchemistryKraft processXylansVolatilization0210 nano-technologyCarbohydrate Polymers
researchProduct

A mechanistic model on the role of “radially-running” collagen fibers on dissection properties of human ascending thoracic aorta.

2014

Aortic dissection (AoD) is a common condition that often leads to life-threatening cardiovascular emergency. From a biomechanics viewpoint, AoD involves failure of load-bearing microstructural components of the aortic wall, mainly elastin and collagen fibers. Delamination strength of the aortic wall depends on the load-bearing capacity and local micro-architecture of these fibers, which may vary with age, disease and aortic location. Therefore, quantifying the role of fiber micro-architecture on the delamination strength of the aortic wall may lead to improved understanding of AoD. We present an experimentally-driven modeling paradigm towards this goal. Specifically, we utilize collagen fib…

Materials sciencePeel forceFibrillar Collagens0206 medical engineeringBiomedical EngineeringBiophysicsAorta Thoracic02 engineering and technologyDissection (medical)030204 cardiovascular system & hematologyFiber bridge failure modelArticleWeight-Bearing03 medical and health sciences0302 clinical medicinemedicine.arteryCollagen fibermedicineAnimalsHumansThoracic aortaOrthopedics and Sports MedicineFiberAortaAortic dissectionAortaAortic Aneurysm ThoracicbiologyDissectionRehabilitationDelaminationModels CardiovascularBiomechanicsAnatomymedicine.disease020601 biomedical engineeringBiomechanical PhenomenaElastinExtracellular MatrixAortic Dissectionbiology.proteinFemaleElastinBiomedical engineering
researchProduct

Inclusion of the periodontal ligament in studies on the biomechanical behavior of fiber post-retained restorations: An in vitro study and three-dimen…

2016

Endodontically treated teeth are known to have reduced structural strength. Periodontal ligament may influence fracture resistance. The purpose of this study was to assess the influence of including the periodontal ligament in biomechanical studies about endodontically treated and restored teeth. Forty human maxillary central incisors were treated endodontically and randomly divided into four groups: non-crowned (with and without an artificial ligament) and crowned (with and without an artificial ligament) with glass-ceramic crowns. All groups received prefabricated glass-fiber posts and a composite resin core. Specimens were tested, under a flexural–compressive load, until failure occurre…

Materials sciencePeriodontal Ligamentmedicine.medical_treatmentDental ResearchFinite Element AnalysisDentistryComposite ResinsCrown (dentistry)03 medical and health sciences0302 clinical medicinestomatognathic systemIncisormedicinePeriodontal fiberIn vitro studyHumansMaxillary central incisorRestorative dentistryOrthodonticsTooth Nonvitalbusiness.industryMechanical EngineeringBiomechanics030206 dentistryGeneral MedicineModels DentalBiomechanical PhenomenaIncisorstomatognathic diseasesmedicine.anatomical_structureLigamentbusiness030217 neurology & neurosurgeryProceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
researchProduct

Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous ma…

2019

The growing demand for nanofibrous biocomposites able to provide peculiar properties requires systematic investigations of processing-structure-property relationships. Understanding the morpho-mechanical properties of an electrospun scaffold as a function of the filler features and mat microstructure can aid in designing these systems. In this work, the reinforcing effect of micrometric and nanometric hydroxyapatite particles in polylactic acid-based electrospun scaffold presenting random and aligned fibers orientation, was evaluated. The particles incorporation was investigated trough Fourier transform infrared spectroscopy in attenuated total reflectance. The morphology of the nanofibers …

Materials sciencePolyestersNanofibersBiomedical EngineeringBiocompatible Materials02 engineering and technologyBone tissuePolylactic acidHydroxyapatitePre-osteoblatic cellsBiomaterialsMice03 medical and health scienceschemistry.chemical_compoundCrystallinity0302 clinical medicineElectricityPolylactic acidTensile StrengthUltimate tensile strengthmedicineAnimalsParticle SizeComposite materialFourier transform infrared spectroscopyCell ProliferationMechanical PhenomenaElectrospinningGuided Tissue RegenerationViscositySettore ING-IND/34 - Bioingegneria Industriale3T3 Cells030206 dentistry021001 nanoscience & nanotechnologyElectrospinningDurapatitemedicine.anatomical_structurechemistryMechanics of MaterialsAttenuated total reflectionNanofiberAligned fibers0210 nano-technology
researchProduct

Evaluation of mechanical and morphologic features of PLLA membranes as supports for perfusion cells culture systems

2015

Abstract Porous biodegradable PLLA membranes, which can be used as supports for perfusion cell culture systems were designed, developed and characterized. PLLA membranes were prepared via diffusion induced phase separation (DIPS). A glass slab was coated with a binary PLLA–dioxane solution (8 wt.% PLLA) via dip coating, then pool immersed in two subsequent coagulation baths, and finally dried in a humidity-controlled environment. Surface and mechanical properties were evaluated by measuring pore size, porosity via scanning electron microscopy, storage modulus, loss modulus and loss angle by using a dynamic mechanical analysis (DMA). Cell adhesion assays on different membrane surfaces were a…

Materials scienceScanning electron microscopePolyestersCell Culture TechniquesPolyesterBioengineeringNanotechnology02 engineering and technologyCondensed Matter Physic010402 general chemistry01 natural sciencesDip-coatingCell LineBiomaterialsElastic ModulusTensile StrengthDynamic modulusHumansMechanics of MaterialPorosityElastic modulusMechanical PhenomenaElastic ModuluEpithelial CellMechanical Engineeringtechnology industry and agricultureTemperatureCell adhesionEpithelial CellsMembranes ArtificialDynamic mechanical analysis021001 nanoscience & nanotechnology0104 chemical sciencesPLLA membranePolyesterPerfusionMembraneChemical engineeringMechanics of MaterialsMaterials Science (all)Stress Mechanical0210 nano-technologyMechanical propertieCell Culture TechniquePorosityHuman
researchProduct

Can biomechanical analysis shed some light on aneurysmal pathophysiology? Preliminary study on ex vivo cerebral arterial walls

2019

Abstract Background The pathophysiology of cerebral aneurysm is complex and poorly understood, and it can have the most catastrophic clinical presentation. Flow dynamics is a key player in the initiation and progression of aneurysm. Better understanding the interaction between hemodynamic loading and biomechanical wall responses can help to add the missing piece on aneurysmal pathophysiology. In this laboratory study we aimed to analyze the effect of the application of a mechanical force to cerebral arterial walls. Methods Displacement control tests were performed on five porcine cerebral arteries. The test machine was the T150 Nanotensile. The stiffness variation with the increment of the …

Materials scienceSwineCerebral arteriesBiophysicsHemodynamicsStrain (injury)Weight-BearingStress (mechanics)03 medical and health sciences0302 clinical medicineAneurysmmedicineAnimalsHumansOrthopedics and Sports MedicineAortaMechanical PhenomenaHemodynamicsStiffnessIntracranial AneurysmArteries030229 sport sciencesmedicine.diseaseBiomechanical analysis Flow dynamics Cerebral aneurysm Cerebral arterial wallsPathophysiologyBiomechanical PhenomenaHyperelastic materialAnisotropyStress Mechanicalmedicine.symptom030217 neurology & neurosurgeryBiomedical engineering
researchProduct

Investigation of the hemodynamic flow conditions and blood-induced stresses inside an abdominal aortic aneurysm by means of a SPH numerical model.

2019

The estimation of blood flow-induced loads occurring on the artery wall is affected by uncertainties hidden in the complex interaction of the pulsatile flow, the mechanical parameters of the artery, and the external support conditions. To circumvent these difficulties, a specific tool is developed by combining the aorta displacements measured by an electrocardiogram-gated-computed tomography angiography, with the blood velocity field computed by a smoothed particle hydrodynamics (SPH) numerical model. In the present work, the SPH model has been specifically adapted to the solution of the 3D Navier-Stokes equations inside a domain with boundaries of prescribed motion. Images of the abdominal…

Materials scienceTime FactorsQuantitative Biology::Tissues and OrgansPhysics::Medical PhysicsBiomedical EngineeringPulsatile flowHemodynamicsSettore ICAR/01 - IdraulicaPhysics::Fluid DynamicsAneurysmDiastolemedicine.arterymedicineShear stressPressureHumansComputer SimulationMolecular BiologyAortamedicine.diagnostic_testCardiac cycleApplied MathematicsHemodynamicsModels CardiovascularMechanicsmedicine.diseaseAbdominal aortic aneurysmBiomechanical PhenomenaComputational Theory and MathematicsModeling and SimulationAngiographycardiovascular systemHydrodynamicsStress MechanicalInfrarenal abdominal aorta aneurysm shear stresses arterial wall SPH moving boundarySoftwareAlgorithmsBlood Flow VelocityAortic Aneurysm AbdominalInternational journal for numerical methods in biomedical engineeringREFERENCES
researchProduct

A Standardised Approach to the Biomechanical Evaluation of Tracheal Grafts

2021

[EN] The ideal tracheal substitute must have biomechanical properties comparable to the native trachea, but currently there is no standardised approach to evaluating these properties. Here we propose a novel method for evaluating and comparing the properties of tracheal substitutes, thus systematising both measurement and data curation. This system was tested by comparing native rabbit tracheas to frozen and decellularised specimens and determining the histological characteristics of those specimens. We performed radial compression tests on the anteroposterior tracheal axis and longitudinal axial tensile tests with the specimens anastomosed to the jaw connected to a measuring system. All ca…

Materials scienceVolume UnitBioengineeringtracheaBiochemistryMicrobiologyArticlebiomechanicsUltimate tensile strengthAnimalsHumansTissue engineeringBiomechanicsLongitudinal axisairway bioengineering biomechanics tissue engineering trachea transplantationMolecular BiologyTransplantationbioengineeringTissue ScaffoldsBiomechanicsrespiratory systemQR1-502Biomechanical PhenomenaTracheaTransplantationAirwayRadial compressionairwaytissue engineeringRabbitsBiomedical engineeringtransplantationBiomolecules
researchProduct