Search results for "Mechanics of Material"
showing 10 items of 2608 documents
Axial Load Capacity of Cold Formed Pipe Flange Connection
2017
In this paper, a cold forming process is used where the connection between a pipe and a flange is created by means of radially expanding tool segments inside the pipe. The method is investigated with two purposes, to set up a robust procedure for the process that allows for connections to be made on site, and to set up finite element (FE) simulations that can capture the forces and deformations when pulling the pipe axially out of the flange. Experimental data and FE simulations are used to describe and understand the forces and deformations during the connection process. The rapid increase in radial stiffness experienced when the pipe comes in full circumferential contact with the flange i…
Effect of active heating and cooling on microstructure and mechanical properties of friction stir–welded dissimilar aluminium alloy and titanium butt…
2019
A butt joint configuration of AA6061–pure Ti was welded using friction stir welding (FSW) with an assisted cooling and heating conditions, aiming to attain a flawless joint. Cooling-assisted friction stir welding (CFSW) was carried out with a different cooling medium such as CO2, compressed air and water at controlled flow rate. However, heating-assisted friction stir welding (HFSW) was performed with heating source of GTAW torch just before FSW tool at different current density. Prepared specimens were subjected to optical microscopy (OM), scanning electron microscopy (SEM) and electrodischarge spectroscopy (EDS) for microstructural characterizations. The tensile strength and microhardness…
Residual stress measurement in innovative friction stir welding processes
2017
In recent years, important innovations have been introduced in Friction Stir Welding (FSW) technology such as, for example, the Laser assisted Friction Stir Welding (LFSW) and in-process Cooled Friction Stir Welding (CFSW). Residual stresses have a fundamental role in welded structures because they affect the way to design the structures, fatigue life, corrosion resistance and many other material properties. Consequently, it is important to investigate the residual stress distribution in FSW where, though the heat input is lower compared to traditional welding techniques, the constraints applied to the parts to weld are more severe. The aim of the present work is to verify the capabilities …
High-temperature in-process inspection followed by 96-h robotic inspection of intentionally manufactured hydrogen crack in multi-pass robotic welding
2021
Abstract This investigation introduces two new techniques to quantitatively address the challenging problem of understanding Hydrogen Induced Cracking (HIC) in welding processes. The first technique is a novel procedure to create a known and controlled HIC in a welded sample. The second is an in-process monitoring technique to measure the initial formation and subsequent growth of the HIC in a multi-pass weld whilst being compatible with the high temperatures associated with the welding process. The HIC was initiated using a localised quenching method of the weld and its character was verified using both macrograph and microscopic investigations. During HIC initiation and growth, the sample…
Innovative method to estimate state of charge of the hydride hydrogen tank: application of fuel cell electric vehicles
2021
International audience; Significant attention has been paid to metal hydrides (MH) as an environmentally friendly and safe way to store hydrogen. This technology has considerable potential for the application of embedded hydrogen storage in fuel cell electric vehicles, but its widespread application faces a major problem in terms of estimating the remaining hydrogen amount in the tank. In this work, a new method is proposed for estimating the state of charge (SoC) of the hydrogen hydride tank (HHT) by application of piezoelectric material. The idea is to cover the entire inner wall of the metal-hydride tank with a layer of piezoelectric material. During the process of hydrogen absorption, t…
Considerations Regarding the Industrial Implementation of Incremental Forming Process
2019
Incremental forming is a promising manufacturing process which allow the user to obtain sheet metal parts, in a flexible manner, without the use of a die. However, the industry is still reluctant to apply the process on an industrial scale. Several drawbacks of the process which hinder its industrial implementation are reviewed in the paper. Among them, the low accuracy of the parts and the low productivity of the process are considered. The lack of dedicated technological equipment and specific CAM software tools are also seen as major drawbacks. Moreover, the lack of any analytical tools to predict the plastic behaviour of the processed part and to predict the moment when it loses its int…
Influence of Process Parameters on the Product Integrity in Friction Stir Extrusion of Magnesium Alloys
2016
Friction Stir Extrusion is an innovative direct-recycling technology for metal machining chips. During the process a specifically designed rotating tool is plunged into a cylindrical matrix containing the scraps to be recycled. The stirring action of the tool prompts solid bonding related phenomena allowing the back extrusion of a full dense rod. This process results to be particularly relevant because allows the reuse of the scrap without any previous treatment. Experiments have been carried out in order to investigate the influence of the process parameters on the extrudes quality and a numerical model has been developed in order to simulate the evolution of the material flow.
Dissimilar titanium/aluminum friction stir welding lap joints by experiments and numerical simulation
2016
Dissimilar lap joints were produced by friction stir welding (FSW) out of Ti6Al4V titanium alloy and AA2024 aluminum alloy sheets. The joints, welded with varying tool rotation and feed rate, were studied by analyzing the maximum shear strength, Vickers microhardness and optical observations. A dedicated numerical model, able to take into account the presence of the two different alloys, was used to highlight the effects of the process parameters on temperature distribution, strain distribution, and material flow. The combined analysis of experimental measurements and numerical predictions allowed explaining the effects of tool rotation and feed rate on the material flow. It was found that …
Effect of position and force tool control in friction stir welding of dissimilar aluminum-steel lap joints for automotive applications
2020
Widespread use of aluminum alloys for the fabrication of car body parts is conditional to the use of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Friction stir welding (FSW) is considered to be a reasonable solution to obtain sound aluminum-steel joints. In this context, this work studies the effects of tool position and force control in dissimilar friction stir welding of AA6061 aluminum alloy on DC05 low carbon steel in lap joint configuration, also assessing proper welding parameter settings. Naked eye and scanning electron microscopy (SEM) have been used to detect macroscopic and microscopic defects in joints, as well as t…
A flexible robotic cell for in-process inspection of multi-pass welds
2020
Welds are currently only inspected after all the passes are complete and after allowing sufficient time for any hydrogen cracking to develop, typically over several days. Any defects introduced between passes are therefore unreported until fully buried, greatly complicating rework and also delaying early corrections to the weld process parameters. In-process inspection can provide early intervention but involves many challenges, including operation at high temperatures with significant gradients affecting acoustic velocities and, hence, beam directions. Reflections from the incomplete parts of the weld would also be flagged as lack-of-fusion defects, requiring the region of interest (ROI) t…