Search results for "Mechanics of Material"

showing 10 items of 2608 documents

Axial Load Capacity of Cold Formed Pipe Flange Connection

2017

In this paper, a cold forming process is used where the connection between a pipe and a flange is created by means of radially expanding tool segments inside the pipe. The method is investigated with two purposes, to set up a robust procedure for the process that allows for connections to be made on site, and to set up finite element (FE) simulations that can capture the forces and deformations when pulling the pipe axially out of the flange. Experimental data and FE simulations are used to describe and understand the forces and deformations during the connection process. The rapid increase in radial stiffness experienced when the pipe comes in full circumferential contact with the flange i…

0209 industrial biotechnologyMaterials scienceDeformation (mechanics)business.industryMechanical EngineeringConnection (principal bundle)02 engineering and technologyStructural engineeringFlangeStress (mechanics)020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringMechanics of MaterialsAxial loadComposite materialSafety Risk Reliability and QualitybusinessCold formingJournal of Pressure Vessel Technology
researchProduct

Effect of active heating and cooling on microstructure and mechanical properties of friction stir–welded dissimilar aluminium alloy and titanium butt…

2019

A butt joint configuration of AA6061–pure Ti was welded using friction stir welding (FSW) with an assisted cooling and heating conditions, aiming to attain a flawless joint. Cooling-assisted friction stir welding (CFSW) was carried out with a different cooling medium such as CO2, compressed air and water at controlled flow rate. However, heating-assisted friction stir welding (HFSW) was performed with heating source of GTAW torch just before FSW tool at different current density. Prepared specimens were subjected to optical microscopy (OM), scanning electron microscopy (SEM) and electrodischarge spectroscopy (EDS) for microstructural characterizations. The tensile strength and microhardness…

0209 industrial biotechnologyMaterials scienceDissimilar metal joiningMechanical properties02 engineering and technologyWeldingIndentation hardness020501 mining & metallurgylaw.inventionHeating020901 industrial engineering & automationlawUltimate tensile strengthAluminium alloyFriction stir weldingmechanical propertieboron carbidefriction stir processingComposite materialmetal matrix compositeInterfacial microstructureHybrid friction stir weldingMechanical EngineeringGas tungsten arc weldingMetals and AlloysMicrostructure0205 materials engineeringMechanics of Materialsvisual_artaluminumvisual_art.visual_art_mediumButt jointMaterials processingCooling
researchProduct

Residual stress measurement in innovative friction stir welding processes

2017

In recent years, important innovations have been introduced in Friction Stir Welding (FSW) technology such as, for example, the Laser assisted Friction Stir Welding (LFSW) and in-process Cooled Friction Stir Welding (CFSW). Residual stresses have a fundamental role in welded structures because they affect the way to design the structures, fatigue life, corrosion resistance and many other material properties. Consequently, it is important to investigate the residual stress distribution in FSW where, though the heat input is lower compared to traditional welding techniques, the constraints applied to the parts to weld are more severe. The aim of the present work is to verify the capabilities …

0209 industrial biotechnologyMaterials scienceFriction Stir Welding; In-process Cooled Friction Stir Welding; Laser assisted Friction Stir Welding; Residual stress; X-ray diffraction; Materials Science (all); Mechanics of Materials; Mechanical EngineeringLaser assisted Friction Stir WeldingFriction Stir WeldingResidual stress02 engineering and technologyWeldinglaw.invention020901 industrial engineering & automationlawResidual stressFriction stir weldingGeneral Materials ScienceFriction weldingComposite materialMechanical EngineeringMetallurgyIn-process Cooled Friction Stir Welding021001 nanoscience & nanotechnologyStrength of materialsX-ray diffractionMechanics of MaterialsMaterials Science (all)0210 nano-technologyresidual stress friction stir welding laser assisted friction stir welding in-process cooled friction stir welding x-ray diffraction
researchProduct

High-temperature in-process inspection followed by 96-h robotic inspection of intentionally manufactured hydrogen crack in multi-pass robotic welding

2021

Abstract This investigation introduces two new techniques to quantitatively address the challenging problem of understanding Hydrogen Induced Cracking (HIC) in welding processes. The first technique is a novel procedure to create a known and controlled HIC in a welded sample. The second is an in-process monitoring technique to measure the initial formation and subsequent growth of the HIC in a multi-pass weld whilst being compatible with the high temperatures associated with the welding process. The HIC was initiated using a localised quenching method of the weld and its character was verified using both macrograph and microscopic investigations. During HIC initiation and growth, the sample…

0209 industrial biotechnologyMaterials scienceHydrogen induced cracksHydrogenchemistry.chemical_elementMechanical engineering02 engineering and technologyWeldinglaw.inventionRobot welding020901 industrial engineering & automation0203 mechanical engineeringlawNondestructive testingGeneral Materials ScienceRobotic weldingQuenchingbusiness.industryRobotic nondestructive testingMechanical EngineeringPhased array ultrasonic testing (PAUT)Work in processCrack growth monitoringCracking020303 mechanical engineering & transportschemistryWelding processTAMechanics of MaterialsbusinessIntentionally embedded defects
researchProduct

Innovative method to estimate state of charge of the hydride hydrogen tank: application of fuel cell electric vehicles

2021

International audience; Significant attention has been paid to metal hydrides (MH) as an environmentally friendly and safe way to store hydrogen. This technology has considerable potential for the application of embedded hydrogen storage in fuel cell electric vehicles, but its widespread application faces a major problem in terms of estimating the remaining hydrogen amount in the tank. In this work, a new method is proposed for estimating the state of charge (SoC) of the hydrogen hydride tank (HHT) by application of piezoelectric material. The idea is to cover the entire inner wall of the metal-hydride tank with a layer of piezoelectric material. During the process of hydrogen absorption, t…

0209 industrial biotechnologyMaterials scienceHydrogen020209 energychemistry.chemical_element02 engineering and technologyHydrogen tank7. Clean energy[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.AUTO]Engineering Sciences [physics]/AutomaticMetal020901 industrial engineering & automation0202 electrical engineering electronic engineering information engineering[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]Electrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Waste managementHydride[SPI.NRJ]Engineering Sciences [physics]/Electric powerPiezoelectricityEnvironmentally friendlyState of chargechemistryHardware and ArchitectureMechanics of MaterialsModeling and Simulationvisual_artvisual_art.visual_art_medium[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]Fuel cellsSoftware
researchProduct

Considerations Regarding the Industrial Implementation of Incremental Forming Process

2019

Incremental forming is a promising manufacturing process which allow the user to obtain sheet metal parts, in a flexible manner, without the use of a die. However, the industry is still reluctant to apply the process on an industrial scale. Several drawbacks of the process which hinder its industrial implementation are reviewed in the paper. Among them, the low accuracy of the parts and the low productivity of the process are considered. The lack of dedicated technological equipment and specific CAM software tools are also seen as major drawbacks. Moreover, the lack of any analytical tools to predict the plastic behaviour of the processed part and to predict the moment when it loses its int…

0209 industrial biotechnologyMaterials scienceMechanical EngineeringForming processes020207 software engineering02 engineering and technologyCondensed Matter PhysicsFuzzy logicManufacturing engineering020901 industrial engineering & automationMechanics of Materials0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceProductivityMaterials Science Forum
researchProduct

Influence of Process Parameters on the Product Integrity in Friction Stir Extrusion of Magnesium Alloys

2016

Friction Stir Extrusion is an innovative direct-recycling technology for metal machining chips. During the process a specifically designed rotating tool is plunged into a cylindrical matrix containing the scraps to be recycled. The stirring action of the tool prompts solid bonding related phenomena allowing the back extrusion of a full dense rod. This process results to be particularly relevant because allows the reuse of the scrap without any previous treatment. Experiments have been carried out in order to investigate the influence of the process parameters on the extrudes quality and a numerical model has been developed in order to simulate the evolution of the material flow.

0209 industrial biotechnologyMaterials scienceMechanical EngineeringMetallurgyProcess (computing)Scrap02 engineering and technologyReuse021001 nanoscience & nanotechnologyStrength of materialsFinite element methodMaterial flow020901 industrial engineering & automationMechanics of MaterialsGeneral Materials ScienceExtrusionMagnesium alloy0210 nano-technologyKey Engineering Materials
researchProduct

Dissimilar titanium/aluminum friction stir welding lap joints by experiments and numerical simulation

2016

Dissimilar lap joints were produced by friction stir welding (FSW) out of Ti6Al4V titanium alloy and AA2024 aluminum alloy sheets. The joints, welded with varying tool rotation and feed rate, were studied by analyzing the maximum shear strength, Vickers microhardness and optical observations. A dedicated numerical model, able to take into account the presence of the two different alloys, was used to highlight the effects of the process parameters on temperature distribution, strain distribution, and material flow. The combined analysis of experimental measurements and numerical predictions allowed explaining the effects of tool rotation and feed rate on the material flow. It was found that …

0209 industrial biotechnologyMaterials sciencePolymers and PlasticsAA2024Lap joint02 engineering and technologyWeldingRotationIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationlawShear strengthFriction stir weldingMechanics of MaterialComposite materialJoint (geology)Finite element method (FEM)Polymers and PlasticFriction stir welding (FSW)Mechanical EngineeringTi6Al4VTitanium alloy021001 nanoscience & nanotechnologyMaterial flowLap jointMechanics of Materials0210 nano-technology
researchProduct

Effect of position and force tool control in friction stir welding of dissimilar aluminum-steel lap joints for automotive applications

2020

Widespread use of aluminum alloys for the fabrication of car body parts is conditional to the use of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Friction stir welding (FSW) is considered to be a reasonable solution to obtain sound aluminum-steel joints. In this context, this work studies the effects of tool position and force control in dissimilar friction stir welding of AA6061 aluminum alloy on DC05 low carbon steel in lap joint configuration, also assessing proper welding parameter settings. Naked eye and scanning electron microscopy (SEM) have been used to detect macroscopic and microscopic defects in joints, as well as t…

0209 industrial biotechnologyMaterials sciencePolymers and PlasticsCarbon steelAlloyContext (language use)02 engineering and technologyWeldingengineering.materialIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationAA6016 aluminum alloy0203 mechanical engineeringlawFriction stir weldingComposite materialJoint (geology)Tensile testingFriction stir welding (FSW)Mechanical EngineeringDissimilar materialWelding parametersDissimilar materialsAA6016 aluminum alloy; DC05 low carbon steel; Dissimilar materials; Friction stir welding (FSW); Welding parameters020303 mechanical engineering & transportsLap jointMechanics of MaterialsDC05 low carbon steelengineering
researchProduct

A flexible robotic cell for in-process inspection of multi-pass welds

2020

Welds are currently only inspected after all the passes are complete and after allowing sufficient time for any hydrogen cracking to develop, typically over several days. Any defects introduced between passes are therefore unreported until fully buried, greatly complicating rework and also delaying early corrections to the weld process parameters. In-process inspection can provide early intervention but involves many challenges, including operation at high temperatures with significant gradients affecting acoustic velocities and, hence, beam directions. Reflections from the incomplete parts of the weld would also be flagged as lack-of-fusion defects, requiring the region of interest (ROI) t…

021103 operations researchComputer scienceTKMechanical EngineeringGas tungsten arc welding0211 other engineering and technologiesMetals and AlloysReworkProcess (computing)Mechanical engineering02 engineering and technologyWeldingWork in process01 natural scienceslaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineMechanics of MaterialslawRegion of interest0103 physical sciencesMaterials ChemistryRobotUltrasonic sensorRobotics In-process inspection Multi-pass welds010301 acoustics
researchProduct