Search results for "Mechanics of Material"
showing 10 items of 2608 documents
Data mining approaches to identify biomineralization related sequences.
2015
Proteomics is an efficient high throughput technique developed to identify proteins from a crude extract using sequence homology. Advances in Next Generation Sequencing (NGS) have led to increase knowledge of several non-model species. In the field of calcium carbonate biomineralization, the paucity of available sequences (such as the ones of mollusc shells) is still a bottleneck in most proteomic studies. Indeed, this technique needs proteins databases to find homology. The aim of this study was to perform different data mining approaches in order to identify novel shell proteins. To this end, we disposed of several publicly non-model molluscs databases. Previously identified molluscan she…
Structural commonalities and deviations in the hierarchical organization of crossed-lamellar shells: A case study on the shell of the bivalve Glycyme…
2016
11 pages; International audience; The structural organization of the palliostracum—the dominant part of the shell which is formed by the mantle cells—of Glycymeris glycymeris (Linné 1758) is comprised of five hierarchical levels with pronounced structural commonalities and deviations from other crossed-lamellar shells. The hierarchical level known as second order lamellae, present within other crossed-lamellar shells, is absent highlighting a short-coming of the currently used nomenclature. On the mesoscale, secondary microtubules penetrate the palliostracum and serve as crack arrestors. Moreover, the growth lamellae follow bent trajectories possibly impacting crack propagation, crack defle…
Bi-layered polyurethane – Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model
2016
As an intervention to abrogate ischemic cardiomyopathy, the concept of applying a temporary, local patch to the surface of the recently infarcted ventricle has been explored from a number of design perspectives. Two important features considered for such a cardiac patch include the provision of appropriate mechanical support and the capacity to influence the remodeling pathway by providing cellular or biomolecule delivery. The objective of this report was to focus on these two features by first evaluating the incorporation of a cardiac extracellular matrix (ECM) component, and second by evaluating the impact of patch anisotropy on the pathological remodeling process initiated by myocardial …
In vitro evaluation of a biomaterial-based anticancer drug delivery system as an alternative to conventional post-surgery bone cancer treatment
2018
Patients diagnosed with osteosarcoma are currently treated with intravenous injections of anticancer agents after tumor resection. However, due to remaining neoplastic cells at the site of tumor removal, cancer recurrence often occurs. Successful bone regeneration combined with the control of residual cancer cells presents a challenge for tissue engineering. Cyclodextrins loaded with chemotherapeutic drugs reversibly release the drugs over time. Hydroxyapatite bone biomaterials coated with doxorubicin-loaded cyclodextrin should release the drug with time after implantation directly at the original tumor site and may be a way to eliminate residual neoplastic cells. In the present study, we h…
Mapping brain activity with flexible graphene micro-transistors
2016
arXiv:1611.05693v1.-- et al.
Single nanogranules preserve intracrystalline amorphicity in biominerals.
2015
We revisit the ultrastructural features of different calcareous biominerals and identify remarkable similarities: taxonomically very distant species show a common nanogranular structure, even if different extracellular secretion patterns are employed or calcium carbonate polymorphs formed. By these analyses, we elucidate the locus of the small fraction of intracrystalline organic matrix revealing its intergranular character and localize the intracrystalline amorphous calcium carbonate moiety commonly found in mesocrystalline biominerals and provide a first explanation for the pathway by which it is preserved.
Nanoscale Engineering of Designer Cellulosomes.
2016
Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an…
Silver Atomic Quantum Clusters of Three Atoms for Cancer Therapy: Targeting Chromatin Compaction to Increase the Therapeutic Index of Chemotherapy
2018
Nanomaterials with very low atomicity deserve consideration as potential pharmacological agents owing to their very small size and to their properties that can be precisely tuned with minor modifications to their size. Here, it is shown that silver clusters of three atoms (Ag3 -AQCs)-developed by an ad hoc method-augment chromatin accessibility. This effect only occurs during DNA replication. Coadministration of Ag3 -AQCs increases the cytotoxic effect of DNA-acting drugs on human lung carcinoma cells. In mice with orthotopic lung tumors, the coadministration of Ag3 -AQCs increases the amount of cisplatin (CDDP) bound to the tumor DNA by fivefold without modifying CDDP levels in normal tiss…
Proteins as Functional Units of Biocalcification – An Overview
2016
High-throughput approaches such as genomics, transcriptomics and proteomics have led to the discovery of a larger set of biomineralization genes than previously foreseen. These gene lists are often difficult to decode in light of the current models of calcification. Here we overview the proteins available in UniProt (Universal Protein Resource), that were identified directly in metazoan calcium carbonate mineralized structures or known to have direct key-functions in calcification processes. Functional annotation of the protein datasets using Gene Ontology reveals that functions like carbohydrate binding, structural and catalytic activities (e.g. hydrolase) are commonly represented across t…
Unveiling the evolution of bivalve nacre proteins by shell proteomics of Unionoidae.
2015
The formation of the molluscan shell nacre is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called “calcifying matrix” is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, the molecular basis that dictates nacre formation remains largely uncharacterized.Recent expressed sequence tag (EST) investigations of the freshwater mussels (Elliptio complanata and Villosa leinosa) provide an opportunity to further characterize the pr…