Search results for "Mechanosensing"

showing 3 items of 3 documents

Structural studies on filamin domain interactions

2015

immunoglobulin-like domainrakennesmall-angle x-ray scatteringmechanosensingfilamiinitproteiinitliganditfilaminmutaatiotproteiinidomeenitröntgenkristallografiax-ray crystallographyinter-domain interactions
researchProduct

Harnessing mechanosensation in next generation cardiovascular tissue engineering

2020

The ability of the cells to sense mechanical cues is an integral component of ”social” cell behavior inside tissues with a complex architecture. Through ”mechanosensation” cells are in fact able to decrypt motion, geometries and physical information of surrounding cells and extracellular matrices by activating intracellular pathways converging onto gene expression circuitries controlling cell and tissue homeostasis. Additionally, only recently cell mechanosensation has been integrated systematically as a crucial element in tissue pathophysiology. In the present review, we highlight some of the current efforts to assess the relevance of mechanical sensing into pathology modeling and manufact…

0301 basic medicineComputer sciencelcsh:QR1-502Review030204 cardiovascular system & hematologyBiochemistryCardiovascular SystemMechanotransduction Cellularlcsh:MicrobiologyCardiac regeneration03 medical and health sciences0302 clinical medicineTissue engineeringMechanosensingExtracellularAnimalsHumansMolecular BiologyTissue homeostasisMechanosensationTissue EngineeringExtracellular Matrix030104 developmental biologyCardiac regenerationNeuroscienceIntracellular
researchProduct

Dynamic force sensing of filamin revealed in single-molecule experiments

2012

Mechanical forces are important signals for cell response and development, but detailed molecular mechanisms of force sensing are largely unexplored. The cytoskeletal protein filamin is a key connecting element between the cytoskeleton and transmembrane complexes such as integrins or the von Willebrand receptor glycoprotein Ib. Here, we show using single-molecule mechanical measurements that the recently reported Ig domain pair 20–21 of human filamin A acts as an autoinhibited force-activatable mechanosensor. We developed a mechanical single-molecule competition assay that allows online observation of binding events of target peptides in solution to the strained domain pair. We find that fi…

Filaminsta221IntegrinPlasma protein bindingImmunoglobulin domainactin-binding proteinta3111LigandsFilaminoptical tweezerContractile ProteinsHumansCytoskeletonMultidisciplinarybiologyChemistryMicrofilament Proteinsta1182Microfilament ProteinBiological SciencesfilaminTransmembrane proteinCell biologyOptical tweezersbiology.proteinmechanosensingProtein Binding
researchProduct