Search results for "Medicago"
showing 10 items of 107 documents
Etude des interactions plantes-microbes et microbes-microbes au sein de la rhizosphère, sous un aspect coûts-bénéfices, dans un contexte de variation…
2013
Understanding the interactions that bind plants and soil microorganisms is an essential step for the sustainable management of ecosystems, especially in agriculture. The ecosystem services resulting from such interactions include plant productivity which responds, in part, to the food requirements of the world's population and the regulation of biogeochemical cycles. These ecosystem services depend on trophic links between the two partners in the interaction and can be represented by a tradeoff between the costs and benefits for each partner. Plants, being autotrophic organisms or primary producers, are key organisms which introduce carbon into the ecosystem, through photosynthesis. Part of…
Genetic determinism of the plasticity of legume seed protein in different environments : role of sulfur metabolism
2021
The renewed interest in plant proteins has stimulated research aimed at developing markers to aid in the selection of legume varieties better adapted to nutritional needs. Among the traits to be improved and stabilized is the amino acid balance of seeds, the essential amino acids methionine and tryptophan being particularly under-represented in legume seeds. This thesis focuses on seed protein composition, which is a major determinant of the seed amino acid balance. The objective was to explore the genetic and environmental variability in this trait and to identify genes potentially involved in its plasticity when subjected to environmental stresses. In the first part of the thesis, the pro…
The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis
2014
International audience; Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in dep…
Costs-benfits trade-off in the intercation between Medicago truncatula and Pseudomonas fluorescens C7R12 across atmospheric carbon dioxide modulation
2011
The interactions between plants and soil microorganisms are mainly based on trophic relationships. The compounds exchanged represent cost for the organism produces them but a benefit for the one who receive those compounds. A mutualistic relation leads to stability in the cost-benefit balance resulting from a co-evolution between the two organisms. The cost corresponding for the release of carbon compounds by the plant would be offset by benefits in return corresponding for the activities of microorganisms that use them. We tested by an experimental way the effect of CO2 concentration on the interaction between M. truncatula and the bacterium P. fluorescens C7R12. The results allowed a best…
Towards a cell-specific expression atlas of arbuscular mycorrhizal roots in the model legume Medicago truncatula
2007
International audience
Effect of cadmium on growth, isoflavonoid and protein accumulation patterns in mycorrhizal roots of Medicago truncatula
2007
International audience; Ecosystems are submitted to various abiotic stresses, among which heavy metals represent major industrial pollutants. Cadmium (Cd), that has damaging effects on plant metabolism, occurs in agricultural environments through industrial pollution and human activities, including phosphate fertiliser and sewage sludge applications. Metal availability to plants can be modulated by soil microorganisms, including arbuscular mycorrhizal (AM) fungi. In the present work, Cd effects on the model legume Medicago truncatula inoculated or not with the AM fungus Glomus intraradices have been studied at 3 levels: (1) plant biomass production together with green part chlorophyll quant…
Achievements from GLIP functional genomics platforms
2008
Format du poster : N° W212 Format du poster : N° W212; absent
Arbuscular mycorhizal proteomes: what news at the nearby and distant horizon?
2007
International audience; Proteomics has soon emerged as a powerful tool to point out protein modifications in roots interacting with arbuscular mycorrhiza (AM) fungi. Depending on the developmental mycorrhizal stage and on the available amount of mycorrhizal material, untargeted and/or sub-cellular proteomic approaches were applied to reveal and identify proteins whose accumulation was modified during the AM colonisation of Medicago truncatula roots. For the early stage of symbiosis, the protein patterns obtained from noninoculated roots and roots synchronized for appressorium formation in wild-type (Jemalong J5), penetration-defective (TRV25, dmi3) and autoregulation-defective (TR122, sunn)…
Plant gene responses to Glomus mosseae in compatible and incompatible genotypes of Medicago truncatula
2006
International audience
Could subcellular proteomics of root plastids teach us more about mycorrhizal symbiosis?
2007
International audience; The arbuscular mycorrhizal (AM) symbiosis is a mutualistic association between soil-borne fungi and the roots of most plant species. Involving the bilateral exchange of nutrients, the symbiosis is connected to drastic changes in plant cell organelle morphology and physiology. Root plastids, in particular, are forming extensive, network-like structures covering the main symbiotic interface, i.e., intracellular, highly branched haustorium-like fungal structures called arbuscules. These plastid networks are highly dynamic and are formed and degraded concomitantly with the formation and degradation of arbuscules. By producing basic metabolic building blocks like fatty ac…