Search results for "Melanogaster"
showing 10 items of 452 documents
The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function
2021
It is difficult to answer important questions in neuroscience, such as: “how do neural circuits generate behaviour?,” because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion…
Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack.
2016
International audience; Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cyto…
GW-Bodies and P-Bodies Constitute Two Separate Pools of Sequestered Non-Translating RNAs
2015
Non-translating RNAs that have undergone active translational repression are culled from the cytoplasm into P-bodies for decapping-dependent decay or for sequestration. Organisms that use microRNA-mediated RNA silencing have an additional pathway to remove RNAs from active translation. Consequently, proteins that govern microRNA-mediated silencing, such as GW182/Gw and AGO1, are often associated with the P-bodies of higher eukaryotic organisms. Due to the presence of Gw, these structures have been referred to as GW-bodies. However, several reports have indicated that GW-bodies have different dynamics to P-bodies. Here, we use live imaging to examine GW-body and P-body dynamics in the early …
Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain.
2016
Abstract The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly ‘forebrain’, develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox ( rx ), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpress…
Rabphilin involvement in filtration and molecular uptake in Drosophila nephrocytes suggests a similar role in human podocytes
2020
ABSTRACT Drosophila nephrocytes share functional, structural and molecular similarities with human podocytes. It is known that podocytes express the rabphilin 3A (RPH3A)-RAB3A complex, and its expression is altered in mouse and human proteinuric disease. Furthermore, we previously identified a polymorphism that suggested a role for RPH3A protein in the development of urinary albumin excretion. As endocytosis and vesicle trafficking are fundamental pathways for nephrocytes, the objective of this study was to assess the role of the RPH3A orthologue in Drosophila, Rabphilin (Rph), in the structure and function of nephrocytes. We confirmed that Rph is required for the correct function of the en…
Optical Cross-Sectional Muscle Area Determination of <em>Drosophila Melanogaster</em> Adult Indirect Flight Muscles
2018
Muscle mass wasting, known as muscle atrophy, is a common phenotype in Drosophila models of neuromuscular diseases. We have used the indirect flight muscles (IFMs) of flies, specifically the dorso-longitudinal muscles (DLM), as the experimental subject to measure the atrophic phenotype brought about by different genetic causes. In this protocol, we describe how to embed fly thorax muscles for semi thin sectioning, how to obtain a good contrast between muscle and the surrounding tissue, and how to process optical microscope images for semiautomatic acquisition of quantifiable data and analysis. We describe three specific applications of the methodological pipeline. First, we show how the met…
m6A modulates neuronal functions and sex determination in Drosophila
2016
N6-methyladenosine RNA (m6A) is a prevalent messenger RNA modification in vertebrates. Although its functions in the regulation of post-transcriptional gene expression are beginning to be unveiled, the precise roles of m6A during development of complex organisms remain unclear. Here we carry out a comprehensive molecular and physiological characterization of the individual components of the methyltransferase complex, as well as of the YTH domain-containing nuclear reader protein in Drosophila melanogaster. We identify the member of the split ends protein family, Spenito, as a novel bona fide subunit of the methyltransferase complex. We further demonstrate important roles of this complex in …
The desaturase1 gene affects reproduction before, during and after copulation in Drosophila melanogaster
2019
Desaturase1 (desat1) is one of the few genes known to be involved in the two complementary aspects of sensory communication — signal emission and signal reception — in Drosophila melanogaster. In p...
The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and…
2018
[EN] Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in C…
The 40-Year Mystery of Insect Odorant-Binding Proteins
2021
International audience; The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted “transporter role”, OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthpar…