Search results for "Mendelevium"

showing 2 items of 2 documents

First Ionization Potentials of Fm, Md, No, and Lr

2018

We report the first ionization potentials (IP1) of the heavy actinides, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), determined using a method based on a surface ionization process coupled to an online mass separation technique in an atom-at-a-time regime. The measured IP1 values agree well with those predicted by state-of-the-art relativistic calculations performed alongside the present measurements. Similar to the well-established behavior for the lanthanides, the IP1 values of the heavy actinides up to No increase with filling up the 5f orbital, while that of Lr is the lowest among the actinides. These results clear…

ENERGIESThermal ionizationchemistry.chemical_element01 natural sciencesBiochemistryCatalysisColloid and Surface ChemistrySURFACE-IONIZATIONPhysics in GeneralCHEMISTRYIonization0103 physical sciencesELEMENTS010306 general physicsSPECTROSCOPY010304 chemical physicsChemistryFermiumGeneral ChemistryActinideATOMMendeleviumNobeliumAtomic numberAtomic physicsLawrenciumJournal of the American Chemical Society
researchProduct

Measurement of the Md3+/Md2+ Reduction Potential Studied with Flow Electrolytic Chromatography

2013

The reduction behavior of mendelevium (Md) was studied using a flow electrolytic chromatography apparatus. By application of the appropriate potentials on the chromatography column, the more stable Md(3+) is reduced to Md(2+). The reduction potential of the Md(3+) + e(-) → Md(2+) couple was determined to be -0.16 ± 0.05 V versus a normal hydrogen electrode.

ChromatographyStandard hydrogen electrodeFlow (psychology)Analytical chemistrychemistry.chemical_elementElectrolyteIonMendeleviumInorganic ChemistryReduction (complexity)chemistryPhysical and Theoretical ChemistryLuminescenceChromatography columnInorganic Chemistry
researchProduct