Search results for "Mesoscopic System"
showing 10 items of 587 documents
Thin Film Skyrmionics
2022
In condensed matter physics, magnetic skyrmions, topologically stabilized magnetic solitons, have been discovered in various materials systems, which has intrigued the community in terms of not only fundamental physics but also with respect to engineering applications. In particular, skyrmions in thin films are easily manipulable by electrical means even at room temperature. Concomitantly, a variety of possible applications have been proposed and proof-of-concept devices have been demonstrated. Recently, the field of skyrmion-based electronics has been referred to as skyrmionics and this field has been rapidly growing and extended in multiple directions. This review provides recent progres…
Uniform analytic description of dephasing effects in two-state transitions
2007
We describe the effect of pure dephasing upon the time-dependent dynamics of two-state quantum systems in the framework of a Lindblad equation for the time evolution of the density matrix. A uniform approximate formula is derived, which modifies the corresponding lossless transition probability by an exponential factor containing the dephasing rate and the interaction parameters. This formula is asymptotically exact in both the diabatic and adiabatic limits; comparison with numerical results shows that it is highly accurate also in the intermediate range. Several two-state models are considered in more detail, including the Landau-Zener, Rosen-Zener, Allen-Eberly, and Demkov-Kunike models, …
Resonant Rayleigh scattering by confined two-dimensional excitonic states
1997
A systematic study of resonant Rayleigh scattering in semiconductor single quantum wells has been carried out. The dependence of the scattering efficiency on the well width and the temperature has been investigated. The behaviour observed in the resonant Rayleigh spectra can be explained in terms of the confinement of the excitonic states in the plane of the well due to fluctuations in the well width. A microscopic theoretical model for the elastic scattering of light by weakly confined two-dimensional excitonic states has been developed. The Rayleigh scattering efficiency has been calculated to the lowest-order of perturbation theory and the results found to be in good agreement with the e…
Phase sticking in one-dimensional Josephson junction chains
2013
Published version of an article in the journal: Physical Review B - Condensed Matter and Materials Physics. Also available from the publisher at: http://dx.doi.org/10.1103/PhysRevB.88.104501 We studied current-voltage characteristics of long one-dimensional Josephson junction chains with Josephson energy much larger than charging energy, EJ EC. In this regime, typical I-V curves of the samples consist of a supercurrent-like branch at low-bias voltages followed by a voltage-independent chain current branch, Ichain at high bias. Our experiments showed that Ichain is not only voltage-independent but it is also practically temperature-independent up to T=0.7TC. We have successfully model the tr…
Counting atoms using interaction blockade in an optical superlattice.
2008
We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid …
Phonon Avalanche and Superradiance in Paramagnetic Relaxation
1979
New quantum equations for superradiance in extended systems are presented. The possibility of acoustic superradiant emission is discussed on the basis of these equations and a new condition is introduced for superradiance to prevail over incoherent phonon avalanche.
Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping
2011
18 páginas, 3 tablas, 9 figuras.-- et al.
Zero-point excitation of a circularly moving detector in an atomic condensate and phonon laser dynamical instabilities
2020
We study a circularly moving impurity in an atomic condensate for the realisation of superradiance phenomena in tabletop experiments. The impurity is coupled to the density fluctuations of the condensate and, in a quantum field theory language, it serves as an analog of a detector for the quantum phonon field. For sufficiently large rotation speeds, the zero-point fluctuations of the phonon field induce a sizeable excitation rate of the detector even when the condensate is initially at rest in its ground state. For spatially confined condensates and harmonic detectors, such a superradiant emission of sound waves provides a dynamical instability mechanism leading to a new concept of phonon l…
Decoherence of the Exciton and Decay of the Excitonic Polaron in Quantum Dots
2005
Bulk-phonon mechanisms of decoherence of an exciton confined in a quantum dot (QD) are considered in order to establish time limitations for the coherent control of the exciton with relevance to its application in quantum information processing. These are the formation and decay of the excitonic polaron. The estimations of characteristic dephasing times for the InAs/GaAs QD are discussed.
Dynamics and inertia of skyrmionic spin structures
2015
Understanding the motion of magnetic skyrmions is essential if they are to be used as information carriers in devices. It is now shown that topological confinement endows the skyrmions with an unexpectedly large mass, which plays a key role in their dynamics.